

SDS 321: Introduction to Probability and **Statistics** Lecture 9: Discrete random variables

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

www.cs.cmu.edu/∼psarkar/teaching

- ▶ The Bernoulli PMF describes the probability of success/failure in a single trial.
- \blacktriangleright The Binomial PMF describes the probability of k successes out of n trials.
- ▶ Sometimes we may also be interested in doing trials until we see a success.
- ▶ Alice resolves to keep buying lottery tickets until he wins a hundred million dollars. She is interested in the random variable "number of lottery tickets bought until he wins the 100M\$ lottery".
- ▶ Annie is trying to catch a taxi. How many occupied taxis will drive pass before she finds one that is taking passengers?
- ▶ The number of trials required to get a single success is a Geometric Random Variable

We repeatedly toss a biased coin $(P({H}) = p)$. The geometric random variable is the number X of tosses to get a head.

 \blacktriangleright X can take any integral value.

►
$$
P(X = k) = P(\{\underbrace{TT...T}_{k-1}H\}) = (1-p)^{k-1}p.
$$

\n► $\sum_{k} P(X = k) = 1 \text{ (why?)}$

What is $P(X \ge k)$? What is $P(X > k)$?

What is
$$
P(X \ge k)
$$
? What is $P(X > k)$?
\n
$$
P(X \ge k) = \sum_{i=k}^{\infty} p(1-p)^{i-1} = (1-p)^{k-1}
$$

What is $P(X \ge k)$? What is $P(X > k)$?

$$
P(X \ge k) = \sum_{i=k}^{\infty} p(1-p)^{i-1} = (1-p)^{k-1}
$$

▶ Intuitively, this is asking for the probability that the first $k - 1$ tosses are tails.

► This probability is
$$
P(X \ge k) = (1 - p)^{k-1}
$$

What is $P(X \ge k)$? What is $P(X > k)$?

$$
P(X \ge k) = \sum_{i=k}^{\infty} p(1-p)^{i-1} = (1-p)^{k-1}
$$

- ▶ Intuitively, this is asking for the probability that the first $k 1$ tosses are tails.
- ▶ This probability is $P(X \ge k) = (1 p)^{k-1}$
- ▶ $X > k$ is the event that $X \ge k + 1$, and so $P(X > k) = (1 p)^k$

What is $P(X = a + b|X > a)$?

What is
$$
P(X = a + b|X > a)
$$
?
\n
$$
P(X = a + b|X > a) = \frac{P(X = a + b)}{P(X > a)}
$$
\n
$$
= \frac{p(1-p)^{a+b-1}}{(1-p)^a}
$$
\n
$$
= p(1-p)^{b-1} = P(X = b)
$$

▶ You forgot about $X > a$ and started the clock afresh!

What is $P(X > a + b|X > a)$?

What is
$$
P(X > a + b|X > a)
$$
?
\n
$$
P(X > a + b|X > a) = \frac{P(X > a + b)}{P(X > a)}
$$
\n
$$
= \frac{(1 - p)^{a+b}}{(1 - p)^{a}} = (1 - p)^{b}
$$
\n
$$
= P(X > b)
$$

▶ You forgot about $X > a$ and started the clock afresh!

What is $P(X \le a + b|X > a)$?

What is
$$
P(X \le a + b|X > a)
$$
?
\n
$$
P(X \le a + b|X > a) = \frac{P(a < X \le a + b)}{P(X > a)}
$$
\n
$$
= \frac{P(X > a) - P(X > a + b)}{(1 - p)^a}
$$
\n
$$
= \frac{(1 - p)^a - (1 - p)^{a+b}}{(1 - p)^a}
$$
\n
$$
= 1 - (1 - p)^b = P(X \le b)
$$

▶ You forgot about $X > a$ and started the clock afresh!

The Poisson random variable

I have a book with 10000 words. Probability that a word has a typo is 1/1000. I am interested in how many misprints can be there on average? So a Poisson often shows up when you have a Binomial random variable with very large n and very small p but $n \times p$ is moderate. Here $np = 10$.

Our random variable might be:

- \blacktriangleright The number of car crashes in a given day.
- \triangleright The number of buses arriving within a given time period.
- ▶ The number of mutations on a strand of DNA.

We can describe such situations using a **Poisson random variable**.

The Poisson random variable

▶ A Poisson random variable takes non-negative integers as values. It has a nonnegative parameter λ .

►
$$
P(X = k) = e^{-\lambda} \frac{\lambda^k}{k!}
$$
, for $k = 0, 1, 2...$
\n► $\sum_{k=0}^{\infty} P(X = k) = e^{-\lambda} (1 + \lambda + \frac{\lambda^2}{2!} + \frac{\lambda^3}{3!} + ...) = 1$. (Exponential series!)
\n= The PMF is monotonically decreasing for $\lambda = 0.5$

The PMF is increasing and then decreasing for $\lambda = s$

Poisson random variable

- \triangleright When *n* is very large and *p* is very small, a binomial random variable can be well approximated by a Poisson with $\lambda = np$.
- In the above figure we increased n and decreased p so that $np = 3$.
- \triangleright See how close the PMF's of the Binomial(100,0.03) and Poisson(3) are!
- \blacktriangleright More formally, we see that $\binom{n}{k}$ k \setminus $p^k(1-p)^{n-k} \approx \frac{e^{-\lambda}\lambda^k}{k!}$ $\frac{\lambda}{k!}$ when *n* is large, k is fixed, and p is small and $\lambda = np$.

Assume that on a given day 1000 cars are out in Austin. On average, three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?

4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Assume that on a given day 1000 cars are out in Austin. On average, three out of 1000 cars run into a traffic accident per day.

- 1. What is the probability that we see at least two accidents in a day?
- 2. Use poisson approximation!

4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Assume that on a given day 1000 cars are out in Austin. On average, three out of 1000 cars run into a traffic accident per day.

- 1. What is the probability that we see at least two accidents in a day?
- 2. Use poisson approximation!
- 3. $P(X \ge 2) = 1 P(X = 0) P(X = 1) = 1 e^{-3}(1 + 3) = 0.8$
- 4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?

Assume that on a given day 1000 cars are out in Austin. On average, three out of 1000 cars run into a traffic accident per day.

- 1. What is the probability that we see at least two accidents in a day?
- 2. Use poisson approximation!
- 3. $P(X \ge 2) = 1 P(X = 0) P(X = 1) = 1 e^{-3}(1 + 3) = 0.8$
- 4. If you know there is at least one accident, what is the probability that the total number of accidents is at least two?
- 5. $P(X \ge 1) = 1 P(X = 0) = 1 e^{-3} = 0.950$. $P(X > 2|X > 1) = P(X > 2)/P(X > 1) = 0.8/0.950 = 0.84$

Mean

You want to calculate average grade points from hw1. You know that 20 students got 30/30, 30 students got 25/30, and 50 students got 20/30. Whats the average?

 \blacktriangleright The average grade point is

$$
\frac{30 \times 20 + 25 \times 30 + 20 \times 50}{100} = 30 \times 0.2 + 25 \times 0.3 + 20 \times 0.5
$$

 \blacktriangleright Let X be a random variable which represents grade points of hw1.

- \blacktriangleright How will you calculate $P(X = 30)$?
	- ▶ See how many out of 100 students got 30 out of 30 points.

$$
P(X=30) \approx 0.2
$$

- \blacktriangleright $P(X = 25) \approx 0.3$
- $P(X = 20) \approx 0.5$
- \triangleright So roughly speaking, average grade ≈ 30 × $P(X = 30) + 25 \times P(X = 25) + 20 \times P(X = 20)$

Expectation

We define the expected value (or expectation or mean) of a discrete random variable X by

$$
E[X] = \sum_{x} xP(X = x).
$$

 \triangleright X is a Bernoulli random variable with the following PMF:

$$
P(X = x) = \begin{cases} p & X = 1 \\ 1 - p & X = 0 \end{cases}
$$

.

So $E[X] =$

Expectation

We define the expected value (or expectation or mean) of a discrete random variable X by

$$
E[X] = \sum_{x} xP(X = x).
$$

 \triangleright X is a Bernoulli random variable with the following PMF:

$$
P(X = x) = \begin{cases} p & X = 1 \\ 1 - p & X = 0 \end{cases}
$$

So $E[X] = 1 \times p + 0 \times (1 - p) = p$.

- ▶ Expectation of a Bernoulli random variable is just the probability that it is one.
- \triangleright You will also see notation like μ_X .

Expectation: example

You are tossing 4 fair coins independently. Let X denote the number of heads. What is $E[X]$?

- ▶ Any guesses? Well, on an average we should see about 2 coin tosses. No?
- ▶ Lets write down the PMF first.

Expectation: example

You are tossing 4 fair coins independently. Let X denote the number of heads. What is $E[X]$?

- ▶ Any guesses? Well, on an average we should see about 2 coin tosses. No?
- ▶ Lets write down the PMF first.

$$
P(X = x) = \begin{cases} 1/2^4 & X = 0 \\ 4/2^4 & X = 1 \\ 6/2^4 & X = 2 \\ 4/2^4 & X = 3 \\ 1/2^4 & X = 4 \end{cases}
$$

Expectation: example

You are tossing 4 fair coins independently. Let X denote the number of heads. What is $E[X]$?

▶ Any guesses? Well, on an average we should see about 2 coin tosses. No?

▶ Lets write down the PMF first.

$$
P(X = x) = \begin{cases} 1/2^4 & X = 0 \\ 4/2^4 & X = 1 \\ 6/2^4 & X = 2 \\ 4/2^4 & X = 3 \\ 1/2^4 & X = 4 \end{cases}
$$
\n
$$
\triangleright \text{So } E[X] = \frac{4}{2^4} + 2\frac{6}{2^4} + 3\frac{4}{2^4} + 4\frac{1}{2^4} = \frac{32}{16} = 2.
$$

Expectation of a function of a random variable

Lets say you want to compute $E[g(X)]$. Example, I know average temperature in Fahrenheit, but I now want it in Celsius.

$$
\blacktriangleright E[g(X)] = \sum_{X} g(x)P(X = x).
$$

 \triangleright Follows from the definition of PMF of functions of random variables.

▶ Look at page 15 of Bersekas-Tsitsiklis and derive it at home!

► So
$$
E[X^2] = \sum_{x} x^2 P(X = x)
$$
. Second moment of *X*
\n► So $E[X^3] = \sum_{x} x^3 P(X = x)$. Third moment of *X*
\n► So $E[X^k] = \sum_{x} x^k P(X = x)$. k^{th} moment of *X*

▶ We are assuming "under the rugs" that all these expectations are well defined.

Expectation

- ▶ Think of expectation as center of gravity of the PMF or a representative value of X.
- \blacktriangleright How about the spread of the distribution? Is there a number for it?

Variance

Often, you may want to know the spread or variation of the grade points for homework1.

- \blacktriangleright If everyone got the same grade point, then variation is?
- \blacktriangleright If there is high variation, then we know that many students got grade points very different from the average grade point in class.
- \blacktriangleright Formally we measure this using variance of a random variable X.
- \triangleright var(X) = E[(X E[X])²]
- **►** The standard deviation of X is given by $\sigma_X = \sqrt{\text{var}X}$.
- Its easier to think about σ_X , since its on the same scale.
- ▶ The grade points have average 20 out of 30 with a standard deviation of 5 grade points. Roughly this means, most of the students have grade points within $[20 - 5, 20 + 5]$.

Variance

Often, you may want to know the spread or variation of the grade points for homework1.

- \blacktriangleright If everyone got the same grade point, then variation is? 0
- \blacktriangleright If there is high variation, then we know that many students got grade points very different from the average grade point in class.
- \blacktriangleright Formally we measure this using variance of a random variable X.
- \triangleright var(X) = E[(X E[X])²]
- **►** The standard deviation of X is given by $\sigma_X = \sqrt{\text{var}X}$.
- Its easier to think about σ_X , since its on the same scale.
- ▶ The grade points have average 20 out of 30 with a standard deviation of 5 grade points. Roughly this means, most of the students have grade points within $[20 - 5, 20 + 5]$.

Computing the variance

$$
\triangleright \ \ \text{var}(X) = E[(X - E[X])^{2}] = \sum_{x} (x - E[X])^{2} P(X = x)
$$

- Always remember! $E[X]$ or $E[g(X)]$ do not depend on any **particular value of** x . You can treat it as a constant. It only depends on the PMF of X.
- \blacktriangleright This can actually be made simpler.
- ▶ $var(X) = E[X]^2 (E[X])^2$.
- ▶ So you can calculate $E[X^2]$ (second moment) and then subtract the square of $E[X]$ to get the variance!

 $var(X) =$

$$
\text{var}(X) =
$$

$$
\sum_{x} (x - E[X])^{2} P(X = x) = \sum_{x} (x^{2} + (E[X])^{2} - 2xE[X]) P(X = x)
$$

$$
\text{var}(X) =
$$

$$
\sum_{x} (x - E[X])^{2} P(X = x) = \sum_{x} (x^{2} + (E[X])^{2} - 2xE[X]) P(X = x)
$$

$$
= \sum_{x} x^{2} P(X = x) + \sum_{x} (E[X])^{2} P(X = x) - 2 \sum_{x} x E[X] P(X = x)
$$

$$
\mathrm{var}(X) =
$$

$$
\sum_{x} (x - E[X])^{2} P(X = x) = \sum_{x} (x^{2} + (E[X])^{2} - 2xE[X]) P(X = x)
$$

$$
= \sum_{x} x^{2} P(X = x) + \sum_{x} (E[X])^{2} P(X = x) - 2 \sum_{x} xE[X] P(X = x)
$$

$$
\mathrm{var}(X) =
$$

$$
\sum_{x} (x - E[X])^{2} P(X = x) = \sum_{x} (x^{2} + (E[X])^{2} - 2xE[X]) P(X = x)
$$

$$
= \sum_{x} x^{2} P(X = x) + \sum_{x} (E[X])^{2} P(X = x) - 2 \sum_{x} xE[X] P(X = x)
$$

$$
= \sum_{x} x^{2} P(X = x) + (E[X])^{2} - 2(E[X])^{2} = E[X^{2}] - (E[X])^{2}
$$

Say you are looking at a linear function (or transformation) of your random variable X.

- \blacktriangleright $Y = aX + b$. Remember celsius to fahrenheit conversions? They are linear too!
- $E[Y] = E[aX + b] = aE[X] + b$, as simple as that! why?

$$
\mathcal{E}[aX + b] = \sum_{x} (ax + b)P(X = x)
$$

$$
= a \sum_{x} xP(X = x) + b \sum_{x} P(X = x)
$$

Say you are looking at a linear function (or transformation) of your random variable X.

- \blacktriangleright $Y = aX + b$. Remember celsius to fahrenheit conversions? They are linear too!
- $E[Y] = E[aX + b] = aE[X] + b$, as simple as that! why?

$$
\mathcal{E}[aX + b] = \sum_{x} (ax + b)P(X = x)
$$

$$
= a \sum_{x} xP(X = x) + b \sum_{x} P(X = x)
$$

$$
= aE[X] + b
$$

How about $E[Y]$ for $Y = aX^2 + bX + c$?

 $\blacktriangleright E[Y] = E[aX^2 + bX + c] = aE[X^2] + bE[X] + c$, as simple as that! why?

$$
\triangleright E[aX^2 + bX + c] = \sum_{x} (ax^2 + bx + c)P(X = x)
$$

$$
= a\sum_{x} x^2 P(X = x) + b\sum_{x} xP(X = x) + c\sum_{x} P(X = x)
$$

How about $E[Y]$ for $Y = aX^2 + bX + c$? $\blacktriangleright E[Y] = E[aX^2 + bX + c] = aE[X^2] + bE[X] + c$, as simple as that! why?

$$
E[aX^{2} + bX + c] = \sum_{x} (ax^{2} + bx + c)P(X = x)
$$

= $a \sum_{x} x^{2}P(X = x) + b \sum_{x} xP(X = x) + c \sum_{x} P(X = x)$
= $aE[X^{2}] + bE[X] + c$

How about
$$
E[Y]
$$
 for $Y = aX^2 + bX + c$?
\n
$$
E[Y] = E[aX^2 + bX + c] = aE[X^2] + bE[X] + c, \text{ as simple as that!}
$$
\n
$$
E[aX^2 + bX + c] = \sum_{x} (ax^2 + bx + c)P(X = x)
$$
\n
$$
= a\sum_{x} x^2 P(X = x) + b\sum_{x} xP(X = x) + c\sum_{x} P(X = x)
$$
\n
$$
= aE[X^2] + bE[X] + c
$$

 $Y = aX^3 + bX^2 + cX + d$. Can you guess what $E[Y]$ is?

How about
$$
E[Y]
$$
 for $Y = aX^2 + bX + c$?
\n
$$
E[Y] = E[aX^2 + bX + c] = aE[X^2] + bE[X] + c, \text{ as simple as that!}
$$
\n
$$
E[aX^2 + bX + c] = \sum_{x} (ax^2 + bx + c)P(X = x)
$$
\n
$$
= a\sum_{x} x^2 P(X = x) + b\sum_{x} xP(X = x) + c\sum_{x} P(X = x)
$$
\n
$$
= aE[X^2] + bE[X] + c
$$

$$
Y = aX3 + bX2 + cX + d.
$$
 Can you guess what $E[Y]$ is?

$$
E[Y] = aE[X3] + bE[X2] + cE[X] + d.
$$

- ▶ Intuitively? Well you are just shifting everything by the same number.
- ▶ So? the spread of the numbers should stay the same!
- ▶ Prove it at home.

Let $Y = X + b$. What is var(Y)?

Let $Y = X + b$. What is var(Y)?

Let
$$
Y = X + b
$$
. What is $var(Y)$?

▶ Proof:

$$
\triangleright \operatorname{var}(X+b) = E\left[\left(X+b\right)^2\right] - \left(E[X+b]\right)^2
$$

Let
$$
Y = X + b
$$
. What is $var(Y)$?
\n \triangleright Proof:
\n \triangleright $var(X + b) = E[(X + b)^{2}] - (E[X + b])^{2}$
\n $= E[X^{2} + 2bX + b^{2}] - (E[X] + b)^{2}$

Let
$$
Y = X + b
$$
. What is $var(Y)$?
\n
$$
\begin{aligned}\n\text{Proof:} \\
\text{Part}(X + b) &= E[(X + b)^2] - (E[X + b])^2 \\
&= E[X^2 + 2bX + b^2] - (E[X] + b)^2 \\
&= E[X^2] + 2bE[X] + b^2 - ((E[X])^2 + 2bE[X] + b^2)\n\end{aligned}
$$

Let
$$
Y = X + b
$$
. What is $var(Y)$?
\n
$$
\begin{aligned}\n\text{Proof:} \\
\text{Par}(X + b) &= E\left[(X + b)^2 \right] - (E[X + b])^2 \\
&= E\left[X^2 + 2bX + b^2 \right] - (E[X] + b)^2 \\
&= E[X^2] + 2bE[X] + b^2 - ((E[X])^2 + 2bE[X] + b^2) \\
&= E[X^2] - (E[X])^2 = var(X)\n\end{aligned}
$$

Let $Y = aX$. What is var(Y)?

- ▶ Intuitively? Well you are just scaling everything by the same number.
- ▶ So? the spread should increase if $a > 1!$

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2var(X)$.

▶

Let $Y = aX$. Turns out $var(Y) = a^2 var(X)$. ▶ Proof:

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2var(X)$.
\n• Proof:

$$
\triangleright \ \mathrm{var}(aX) = E\left[(aX)^2 \right] - \left(E[aX] \right)^2
$$

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2 var(X)$.
\n• Proof:
\n• $var(aX) = E [(aX)^2] - (E[aX])^2$
\n $= E [a^2X^2] - (aE[X])^2$

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2 var(X)$.
\nProof:
\n
$$
var(aX) = E [(aX)^2] - (E[aX])^2
$$
\n
$$
= E [a^2X^2] - (aE[X])^2
$$
\n
$$
= a^2E [X^2] - a^2(E[X])^2
$$

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2var(X)$.
\nProof:
\n
$$
var(ax) = E [(ax)^2] - (E[aX])^2
$$
\n
$$
= E [a^2X^2] - (aE[X])^2
$$
\n
$$
= a^2E [X^2] - a^2(E[X])^2
$$
\n
$$
= a^2(E[X^2] - (E[X])^2) = a^2var(X)
$$

Let
$$
Y = aX
$$
. Turns out $var(Y) = a^2var(X)$.
\nProof:
\n
$$
var(aX) = E [(aX)^2] - (E[aX])^2
$$
\n
$$
= E [a^2X^2] - (aE[X])^2
$$
\n
$$
= a^2E [X^2] - a^2(E[X])^2
$$
\n
$$
= a^2(E[X^2] - (E[X])^2) = a^2var(X)
$$

In general we can show that $\text{var}(aX + b) = a^2 \text{var}(X)$.

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var(X)?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

.

\n- Well, what is the PMF of
$$
X^2
$$
?
\n- X^2 can take two values:
\n

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var(X)?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

.

- \blacktriangleright Well, what is the PMF of X^2 ?
	- \blacktriangleright X^2 can take two values: 0 and 1

$$
\blacktriangleright \; P(X^2=1)
$$

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var(X)?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

.

- \blacktriangleright Well, what is the PMF of X^2 ?
	- \blacktriangleright X^2 can take two values: 0 and 1

$$
P(X^2 = 1) = P(X = 1) = p.
$$

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var(X)?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

- \blacktriangleright Well, what is the PMF of X^2 ?
	- \blacktriangleright X^2 can take two values: 0 and 1

$$
P(X^2 = 1) = P(X = 1) = p. \ P(X^2 = 0) = P(X = 0) = 1 - p.
$$

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var (X) ?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

- \blacktriangleright Well, what is the PMF of X^2 ?
	- \blacktriangleright X^2 can take two values: 0 and 1
	- ▶ $P(X^2 = 1) = P(X = 1) = p$. $P(X^2 = 0) = P(X = 0) = 1 p$.
	- \blacktriangleright X and X^2 have identical PMF's! They are identically distributed.

X is a Bernoulli random variable wit $P(X = 1) = p$. We saw that $E[X] = p$. What is var (X) ?

First lets get $E[X^2]$. This is

$$
E[X^2] = (1^2 \times P(X = 1) + 0^2 \times P(X = 0)) = p
$$

We see that $E[X^2] = E[X]$. Is this surprising?

- \blacktriangleright Well, what is the PMF of X^2 ?
	- \blacktriangleright X^2 can take two values: 0 and 1
	- ▶ $P(X^2 = 1) = P(X = 1) = p$. $P(X^2 = 0) = P(X = 0) = 1 p$.

 \blacktriangleright X and X^2 have identical PMF's! They are identically distributed.

$$
\triangleright \ \mathrm{var}(X) = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p) \quad .
$$

Mean and Variance of a Binomial

Let $X \sim Bin(n, p)$.

▶ $E[X] = np$ and $var(X) = np(1 - p)$.

 \triangleright We will derive these in the next class.

Mean and Variance of a Poisson

X has a Poisson(λ) distribution. What is its mean and variance?

- \triangleright One can use algebra to show that $E[X] = \lambda$ and also $\text{var}(X) = \lambda$.
- ▶ How do you remember this?
- ▶ Hint: mean and variance of the Binomial approach that of a Poisson when *n* is large and *p* is small, such that $np \approx \lambda$? Anything yet?

Mean and variance of a geometric

▶ The PMF of a geometric distribution is $P(X = k) = (1 - p)^{k-1}p$.

$$
\blacktriangleright E[X] = 1/p
$$

$$
\blacktriangleright \ \mathrm{var}(X) = (1 - p)/p^2
$$

 \blacktriangleright We will also prove this later.