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The Geometric random variable

▶ The Bernoulli PMF describes the probability of success/failure in a
single trial.

▶ The Binomial PMF describes the probability of k successes out of n
trials.

▶ Sometimes we may also be interested in doing trials until we see a
success.

▶ Alice resolves to keep buying lottery tickets until he wins a hundred
million dollars. She is interested in the random variable “number of
lottery tickets bought until he wins the 100M$ lottery”.

▶ Annie is trying to catch a taxi. How many occupied taxis will drive
pass before she finds one that is taking passengers?

▶ The number of trials required to get a single success is a Geometric
Random Variable
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The geometric random variable

We repeatedly toss a biased coin (P({H}) = p). The geometric random
variable is the number X of tosses to get a head.

▶ X can take any integral value.

▶ P(X = k) = P({TT . . .T︸ ︷︷ ︸
k−1

H}) = (1− p)k−1p.

▶
∑
k

P(X = k) = 1 (why?)
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The geometric random variable

What is P(X ≥ k)? What is P(X > k)?

▶ P(X ≥ k) =
∞∑
i=k

p(1− p)i−1 = (1− p)k−1

▶ Intuitively, this is asking for the probability that the first k − 1 tosses
are tails.

▶ This probability is P(X ≥ k) = (1− p)k−1

▶ X > k is the event that X ≥ k + 1, and so P(X > k) = (1− p)k
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The memoryless property

What is P(X = a+ b|X > a)?

▶

P(X = a+ b|X > a) =
P(X = a+ b)

P(X > a)

=
p(1− p)a+b−1

(1− p)a

= p(1− p)b−1 = P(X = b)

▶ You forgot about X > a and started the clock afresh!
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The memoryless property

What is P(X ≤ a+ b|X > a)?

▶

P(X ≤ a+ b|X > a) =
P(a < X ≤ a+ b)

P(X > a)

=
P(X > a)− P(X > a+ b)

(1− p)a

=
(1− p)a − (1− p)a+b

(1− p)a

= 1− (1− p)b = P(X ≤ b)
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The Poisson random variable

I have a book with 10000 words. Probability that a word has a typo is
1/1000. I am interested in how many misprints can be there on average?
So a Poisson often shows up when you have a Binomial random variable
with very large n and very small p but n × p is moderate. Here np = 10.

Our random variable might be:

▶ The number of car crashes in a given day.

▶ The number of buses arriving within a given time period.

▶ The number of mutations on a strand of DNA.

We can describe such situations using a Poisson random variable.
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The Poisson random variable

▶ A Poisson random variable takes non-negative integers as values. It
has a nonnegative parameter λ.

▶ P(X = k) = e−λ λk

k!
, for k = 0, 1, 2 . . . .

▶
∞∑
k=0

P(X = k) = e−λ(1 + λ+
λ2

2!
+

λ3

3!
+ . . . ) = 1. (Exponential

series!)
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Poisson random variable

Binomial(5,0.6) Binomial(100,0.03) Poisson(3)

▶ When n is very large and p is very small, a binomial random variable
can be well approximated by a Poisson with λ = np.

▶ In the above figure we increased n and decreased p so that np = 3.

▶ See how close the PMF’s of the Binomial(100,0.03) and Poisson(3)
are!

▶ More formally, we see that

(
n

k

)
pk (1− p)n−k ≈ e−λλk

k!
when n is

large, k is fixed, and p is small and λ = np.
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Example

Assume that on a given day 1000 cars are out in Austin. On average,
three out of 1000 cars run into a traffic accident per day.

1. What is the probability that we see at least two accidents in a day?

2. Use poisson approximation!

3. P(X ≥ 2) = 1− P(X = 0)− P(X = 1) = 1− e−3(1 + 3) = 0.8

4. If you know there is at least one accident, what is the probability
that the total number of accidents is at least two?

5. P(X ≥ 1) = 1− P(X = 0) = 1− e−3 = 0.950.
P(X ≥ 2|X ≥ 1) = P(X ≥ 2)/P(X ≥ 1) = 0.8/0.950 = 0.84
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Mean

You want to calculate average grade points from hw1. You know that 20
students got 30/30, 30 students got 25/30, and 50 students got 20/30.
Whats the average?

▶ The average grade point is

30× 20 + 25× 30 + 20× 50

100
= 30× 0.2 + 25× 0.3 + 20× 0.5

▶ Let X be a random variable which represents grade points of hw1.

▶ How will you calculate P(X = 30)?

▶ See how many out of 100 students got 30 out of 30 points.
▶ P(X = 30) ≈ 0.2
▶ P(X = 25) ≈ 0.3
▶ P(X = 20) ≈ 0.5

▶ So roughly speaking,
average grade ≈ 30× P(X = 30) + 25× P(X = 25) + 20× P(X = 20)
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Expectation

We define the expected value ( or expectation or mean) of a discrete
random variable X by

E [X ] =
∑
x

xP(X = x).

▶ X is a Bernoulli random variable with the following PMF:

P(X = x) =

{
p X = 1

1− p X = 0

So E [X ] =

1× p + 0× (1− p) = p

.

▶ Expectation of a Bernoulli random variable is just the probability
that it is one.

▶ You will also see notation like µX .
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Expectation: example

You are tossing 4 fair coins independently. Let X denote the number of
heads. What is E [X ]?

▶ Any guesses? Well, on an average we should see about 2 coin
tosses. No?

▶ Lets write down the PMF first.

▶ P(X = x) =



1/24 X = 0

4/24 X = 1

6/24 X = 2

4/24 X = 3

1/24 X = 4

▶ So E [X ] =
4

24
+ 2

6

24
+ 3

4

24
+ 4

1

24
=

32

16
= 2.
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Expectation of a function of a random variable

Lets say you want to compute E [g(X )]. Example, I know average
temperature in Fahrenheit, but I now want it in Celsius.

▶ E [g(X )] =
∑
x

g(x)P(X = x).

▶ Follows from the definition of PMF of functions of random variables.

▶ Look at page 15 of Bersekas-Tsitsiklis and derive it at home!

▶ So E [X2] =
∑
x

x2P(X = x). Second moment of X

▶ So E [X3] =
∑
x

x3P(X = x). Third moment of X

▶ So E [Xk ] =
∑
x

xkP(X = x). kth moment of X

▶ We are assuming ”under the rugs” that all these expectations are
well defined.
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Expectation

▶ Think of expectation as center of gravity of the PMF or a
representative value of X .

▶ How about the spread of the distribution? Is there a number for it?
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Variance

Often, you may want to know the spread or variation of the grade points
for homework1.

▶ If everyone got the same grade point, then variation is?

0

▶ If there is high variation, then we know that many students got
grade points very different from the average grade point in class.

▶ Formally we measure this using variance of a random variable X .

▶ var(X ) = E [(X − E [X ])2]

▶ The standard deviation of X is given by σX =
√
varX .

▶ Its easier to think about σX , since its on the same scale.

▶ The grade points have average 20 out of 30 with a standard
deviation of 5 grade points. Roughly this means, most of the
students have grade points within [20− 5, 20 + 5].
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Computing the variance

▶ var(X ) = E [(X − E [X ])2] =
∑
x

(x − E [X ])2 P(X = x)

▶ Always remember! E [X ] or E [g(X )] do not depend on any
particular value of x. You can treat it as a constant. It only
depends on the PMF of X .

▶ This can actually be made simpler.

▶ var(X ) = E [X ]2 − (E [X ])2.

▶ So you can calculate E [X2] (second moment) and then subtract the
square of E [X ] to get the variance!
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A tiny bit of algebra

var(X ) =

∑
x

(x − E [X ])2 P(X = x) =
∑
x

(
x2 + (E [X ])2 − 2xE [X ]

)
P(X = x)

=
∑
x

x2P(X = x) +
∑
x

(E [X ])2P(X = x)− 2
∑
x

xE [X ]P(X = x)

=
∑
x

x2P(X = x) + (E [X ])2
∑
x

P(X = x)︸ ︷︷ ︸
(E [X ])2 does not depend on x

−2E [X ]
∑
x

xP(X = x)︸ ︷︷ ︸
This is E [X ]

=
∑
x

x2P(X = x) + (E [X ])2 − 2(E [X ])2 = E [X2]− (E [X ])2
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Some simple rules– Expectation

Say you are looking at a linear function (or transformation) of your
random variable X .

▶ Y = aX + b. Remember celsius to fahrenheit conversions? They are
linear too!

▶ E [Y ] = E [aX + b] = aE [X ] + b, as simple as that! why?

▶ E [aX + b] =
∑
x

(ax + b)P(X = x)

= a
∑
x

xP(X = x) + b
∑
x

P(X = x)

= aE [X ] + b
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Some simple rules– Expectation

How about E [Y ] for Y = aX2 + bX + c?

▶ E [Y ] = E [aX2 + bX + c] = aE [X2] + bE [X ] + c, as simple as that!
why?

▶ E [aX 2 + bX + c] =
∑
x

(ax2 + bx + c)P(X = x)

= a
∑
x

x2P(X = x) + b
∑
x

xP(X = x) + c
∑
x

P(X = x)

= aE [X 2] + bE [X ] + c

▶ Y = aX3 + bX2 + cX + d . Can you guess what E [Y ] is?

E [Y ] = aE [X3] + bE [X2] + cE [X ] + d .

21
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Some simple rules– Variance

Let Y = X + b. What is var(Y )?

▶ Intuitively? Well you are just shifting everything by the same
number.

▶ So?

the spread of the numbers should stay the same!

▶ Prove it at home.
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Some simple rules– Variance

Let Y = X + b. What is var(Y )?

▶ Proof:

▶

var(X + b) = E
[
(X + b)2

]
− (E [X + b])2

= E
[
X2 + 2bX + b2

]
− (E [X ] + b)2

= E [X2] + 2bE [X ] + b2 − ((E [X ])2 + 2bE [X ] + b2)

= E [X2]− (E [X ])2 = var(X )
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Some simple rules– Variance

Let Y = aX . What is var(Y )?

▶ Intuitively? Well you are just scaling everything by the same number.

▶ So?

the spread should increase if a > 1!
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Some simple rules– Variance

Let Y = aX . Turns out var(Y ) = a2var(X ).

▶ Proof:

▶

var(aX ) = E
[
(aX )2

]
− (E [aX ])2

= E
[
a2X2

]
− (aE [X ])2

= a2E
[
X2
]
− a2(E [X ])2

= a2(E [X2]− (E [X ])2) = a2var(X )

▶ In general we can show that var(aX + b) = a2var(X ).
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Mean and Variance of Bernoulli

X is a Bernoulli random variable wit P(X = 1) = p. We saw that
E [X ] = p. What is var(X )?

▶ First lets get E [X2]. This is

E [X2] = (12 × P(X = 1) + 02 × P(X = 0)) = p

We see that E [X2] = E [X ]. Is this surprising?

▶ Well, what is the PMF of X2?
▶ X 2 can take two values:

0 and 1

▶ P(X 2 = 1) = P(X = 1) = p. P(X 2 = 0) = P(X = 0) = 1− p

.

▶ X and X 2 have identical PMF’s! They are identically distributed.

▶ var(X ) = E [X2]− (E [X ])2 = p − p2 = p(1− p) .
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Mean and Variance of a Binomial

Let X ∼ Bin(n, p).

▶ E [X ] = np and var(X ) = np(1− p).

▶ We will derive these in the next class.
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Mean and Variance of a Poisson

X has a Poisson(λ) distribution. What is its mean and variance?

▶ One can use algebra to show that E [X ] = λ and also var(X ) = λ.

▶ How do you remember this?

▶ Hint: mean and variance of the Binomial approach that of a Poisson
when n is large and p is small, such that np ≈ λ? Anything yet?
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Mean and variance of a geometric

▶ The PMF of a geometric distribution is P(X = k) = (1− p)k−1p.

▶ E [X ] = 1/p

▶ var(X ) = (1− p)/p2

▶ We will also prove this later.

29


