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Some useful inequalities

So far we have looked at expectations and variances of sums of
independent random variables. Today we will also look at there behavior
when the number of random variables is increasing.

▶ Remember markov’s inequality? For a positive random variable X

and some t > 0, we said that P(X ≥ t) ≤ E [X ]

t
▶ We can use this to bound P(|X − E [X ]| ≥ c).

P(|X − µ| ≥ c) = P((X − µ)2 ≥ c2) ≤ E [(X − µ)2]

c2

▶ This is the famous Chebyshev inequality.

▶ All this comes in handy to show that a random variable cannot be
too far from its expectation if the variance is small.
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Weak law of large numbers

The WLLN basically states that the sample mean of a large number of
random variables is very close to the true mean with high probability.

▶ Consider a sequence of i.i.d random variables X1, . . .Xn with mean µ

and variance σ2.

▶ Let Mn =
X1 + · · ·+ Xn

n
.

▶ E [Mn] =
E [X1] + · · ·+ E [Xn]

n
= µ

▶ var(Mn) =
var[X1] + · · ·+ var[Xn]

n2
=

σ2

n

▶ So P(|Mn − µ| ≥ ϵ) ≤ σ2

nϵ2

▶ For large n this probability is small.
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Illustration

Consider the mean of n independent Poisson(λ) random variables. For
each n, we plot the distribution of the average.
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Can we say more?

Turns out that not only can you say that the sample mean is close to the
true mean, you can actually predict its distribution using the famous
Central Limit Theorem.

▶ Consider a sequence of i.i.d random variables X1, . . .Xn with mean µ

and variance σ2.

▶ Let Mn =
X1 + · · ·+ Xn

n
. Remember E [Mn] = µ and var(Mn) = σ2/n

▶ Standardize Mn to get
Mn − µ

σ/
√
n

=
√
n
Mn − µ

σ

▶ As n gets bigger,
√
n
Mn − µ

σ
behaves more and more like a

Normal(0, 1) random variable.

▶ P(
√
n
Mn − µ

σ
< z) ≈ Φ(z)
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Practice problem
Let X1,Y1,X2,Y2 be independent random variables, uniformly distributed
in the unit interval [0, 1]. Let

W =
X1 + · · ·+ X16 − (Y1 + · · ·+ Y16)

16

Find a numerical approximation of P(|W − E [W ]| > .001).

▶ We can rewrite W as

W =
(X1 − Y1) + (X2 − Y2) + · · ·+ (X16 − Y16)

16
▶ Now note that W is an average of 16 i.i.d random variables. Let

Zi = Xi − Yi .
▶ E [Zi ] = E [Xi ]− E [Yi ] = 0 and so E [W ] = 0.
▶ σ2 = var(Zi ) = var(Xi − Yi ) = var(Xi ) + var(Yi ) = 1/12 + 1/12 = 1/6

and so var(W ) = σ2/16.

▶ Standardize W as Ws =
W − 0

σ/4
. We know that P(Ws < c) ≈ Φ(c)

▶ So

P(|W − E [W ]| > .0001) = P(|W | > 0.001) = P(|W |/(σ/4)) > 0.001/(σ/4))

= P(|Ws | > 0.001/(σ/4)) ≈ P(|Z | > .0098) = 0.9922
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Normal Approximation to Binomial
Consider a Binomial random variable X ∼ Binomial(n, p). For large n we can
calculate the CDF of X by looking up the normal lookup table, which is much
easier than evaluating large factorials.

▶ X =
∑
i

Yi , where Yi are independent Bernoulli(p) random variables. Let

Mn = X/n.
▶ E [Mn] = p and var(Mn) = p(1− p)/n

▶ P(X ≤ x) = P
(
Mn ≤ x

n

)
= P


√
n(Mn − p)√
p(1− p)

≤
√
n(x/n − p)√
np(1− p)︸ ︷︷ ︸
(x−np)√
p(1−p)


≈

Φ

(
(x − np)√
p(1− p)

)
▶ The DeMoivre Laplace limit theorem states that for x2 < x1,

P(x2 ≤ X ≤ x1) ≈ Φ

(
(x1 − np)√
p(1− p)

)
− Φ

(
(x2 − np)√
p(1− p)

)
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Confidence Interval

▶ If I give you n independent datapoints with E [X1] = · · · = E [Xn] = µ

▶ Also, var(X1) = · · · = var(Xn) = σ2

▶ Then Mn =
∑
i

Xi/n is a good estimate of µ

▶ But often we want a confidence interval which shows whether we are
confident about our estimator

▶ We know that Mn is approximately a Gaussian with mean µ and
variance σ2/n

▶ So we are looking for two numbers that you compute from data u, ℓ

such that P(µ ∈ [u, ℓ]) = 1− α

▶ Say we could fine P(|Mn − µ| ≤ tα) = 1− α, then the CI around µ

with coverage α will be [Mn − tα,Mn + tα]
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Confidence Interval - known σ

▶ We know from CLT that (Mn − µ)/(σ/
√
n) ∼ N(0, 1)

▶ We know how to find zα such that P(|Z | ≤ zα) = 1− α,

▶ Then the CI around µ with coverage α will be
[Mn − zασ/

√
n,Mn + zασ/

√
n]

▶ If α = .05, then zα = 1.96 (this is also known as the z-score.
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