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Summary
We study the properties of two subsampling procedures for networks (vertex subsam-

pling and p-subsampling) under the sparse graphon model. The consistency of network
subsampling is demonstrated under the minimal assumptions of weak convergence of
corresponding network statistics and an (expected) subsample size growing to infinity 15

slower than the number of vertices in the network. Furthermore, under appropriate spar-
sity conditions, we derive limiting distributions for the nonzero eigenvalues of an adja-
cency matrix under the sparse graphon model. Our weak convergence result implies the
consistency of our subsampling procedures for eigenvalues under appropriate conditions.

1. Introduction 20

1.1. Statistical Inference for Network Data
The analysis of network data has quickly become one of the most active research

areas in statistics. Many results are now known about canonical network models such
as the stochastic block model and its many variants (Holland et al., 1983; Airoldi et al.,
2008; Karrer & Newman, 2011), the generalized random dot product model (Young 25

& Scheinerman, 2007; Rubin-Delanchy et al., 2022), and the latent space model (Hoff
et al., 2002), among others. For recent developments on minimax rates of nonparametric
estimation in the sparse graphon model defined in Section 1.2, see Gao & Ma (2021).
However, the problem of statistical inference for common network statistics, particularly
in the nonparametric setting, has been less studied. One exception is count statistics; the 30

validity of two subsampling schemes for normalized count functionals of sparse graphons
has been established by Bhattacharyya & Bickel (2015).

Subsampling is a general methodology that has been shown to exhibit first-order cor-
rectness under minimal assumptions for a wide range of data generating processes; for
an overview, see Politis et al. (1999). While count functionals are an important class 35

of statistics in network analysis, we will show that a more general theory is possible
for sparse graphons. Before discussing our results in more detail, we will introduce the
network model that we consider below.

C© 2021 Biometrika Trust



2 Lunde and Sarkar
1.2. Graphons and Sparse Graphons

Let {A(n)}n∈N denote a sequence of n× n adjacency matrices generated by the follow-40

ing model:

A
(n)
ij = A

(n)
ji = 1(ηij ≤ hn(ξi, ξj)) ∼ Bernoulli(hn(ξi, ξj)), (1)

where hn : [0, 1]2 7→ [0, 1] is a symmetric measurable function and ξi ∼ Uniform[0, 1] for
1 ≤ i ≤ n and ηij ∼ Uniform[0, 1] for 1 ≤ i < j ≤ n. We assume that A(n)

ii = 0. We drop
dependence on n when appropriate. Formally, we require that {ξi}∞i=1 and {ηij}(i,j)∈N245

are defined on the common probability space (Ω,F , P ).
When hn = h is fixed for all n, h is often referred to as a graphon, short for graph

function, and (1) is known as the graphon model. Graphons are natural models for
graphs that exhibit vertex exchangeability. The theorems of Aldous (1981) and Hoover
(1979) imply that any binary jointly exchangeable infinite array may be represented50

as a mixture of processes for which the data generating process is given above, with
hn fixed for all n. For modeling purposes, it is common to fix one component of the
mixture, and assume that a size n adjacency matrix is a partial observation from an
infinite array. Alternatively, graphons arise as limits of convergent graph sequences, where
“convergence” may be defined by one of several equivalent notions; see Lovász (2012).55

Graphons are known to imply either empty or dense graphs; in the latter case, the
expected number of edges is Θ(n2). However, many real-world networks are known to
have expected number of edges given by o(n2); therefore having hn fixed as n→∞
is often inappropriate. Instead, following Bickel & Chen (2009), we will consider the
following parametrization. Let:60

ρn = P (Aij = 1) =
∫ 1

0

∫ 1

0
hn(u, v) du dv.

It follows that we may express hn(u, v) as:

hn(u, v) = ρnwn(u, v),

where wn(u, v) : [0, 1]2 7→ R is the conditional density of (ξi, ξj) given A(n)
ij = 1. With this

parametrization, it is natural to keep wn(u, v) fixed and let ρn vary with n. Doing so, we65

arrive at the following model:

hn(u, v) = ρnw(u, v) ∧ 1, (2)

where w is a symmetric, nonnegative function that satisfies
∫ 1

0
∫ 1

0 w(u, v) du dv = 1.
By letting ρn → 0 at an appropriate rate, we may generate an appropriately sparse
sequence of graphs. With this generalization, note that w(u, v) and ρn may lose their70

original interpretation for any finite n. One may alternatively arrive at this model by
considering Lp graphons of Borgs et al. (2019), where w is an element of Lp([0, 1]2)
instead of L∞([0, 1]2). As noted in the above reference, an unbounded graphon allows
power law degree distributions and allows sparse graphs to contain dense spots.

Notable alternative frameworks for sparse network models include the graphon pro-75

cess or graphex (Veitch & Roy, 2015; Borgs et al., 2017) and edge exchangeable random
graphs (Crane & Dempsey, 2018). These models are based on different notions of ex-
changeability. While we focus on sparse graphons only, we will consider a subsampling
procedure based on a natural sampling mechanism for graphexes in Section 2.5. See
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Orbanz (2017) for further discussion on natural sampling mechanisms associated with 80

various network models.

1.3. Related Work on Inference for Network Data
Aside from the work by Bhattacharyya & Bickel (2015), there has been some work

involving subsampling/resampling networks in the statistics literature. For example, Ali
et al. (2016) develop a subsampling method named Netdis, which consists of sampling 85

nodes and forming two-step ego-networks for these nodes. In addition, Levin & Levina
(2019) consider the problem of bootstrapping network statistics that are expressible
as perturbed U-statistics for random dot product graphs. The procedures they consider
involve estimating the latent positions first and bootstrapping the associated U-statistics.
Green & Shalizi (2022) also propose two bootstrap procedures for conducting inference 90

for count functionals, one based on an “empirical graphon” and the other based on a
sieve procedure. Recently, Zhang & Xia (2022) have derived an Edgeworth expansion
for count functionals as well as higher-order correctness of both subsampling and the
empirical graphon bootstrap for counts under certain conditions. Around the time of this
submission, we have also become aware of Naulet et al. (2021), which studies subsampling 95

for count functionals of graphex processes.
In the computer science literature, various subsampling approaches have also been

studied for approximate subgraph counting. In contrast to Bhattacharyya & Bickel
(2015), who consider inference for graphon parameters, the aim here is to approximate
subgraph counts in the graph up to a multiplicative constant in a computationally effi- 100

cient manner. Recently, a literature on sublinear algorithms has emerged, where many
of the proposed procedures are based on edge sampling; see Feige (2006); Goldreich &
Ron (2008); Assadi et al. (2019); Eden et al. (2017); Gonen et al. (2010) and references
therein. Approximate subgraph counting has also received significant attention in various
streaming settings; see for example, Bar-Yosseff et al. (2002); Tsourakakis et al. (2009); 105

Kane et al. (2012); McGregor et al. (2016); Bera & Chakrabarti (2017); Kallaugher &
Price (2017); McGregor et al. (2019).

For the general problem of nonparametric inference for network data, some work has
started to emerge involving hypothesis testing. Ghoshdastidar et al. (2017) develop a
framework for nonparametric two-sample testing based on network statistics that satisfy 110

a certain concentration property. Among the network statistics considered are eigenvalues
of independent edge random graphs. Tang et al. (2017) also consider nonparametric two-
sample testing, but in a setting where the networks are generated by a random dot
product graph. Their test involves estimating the latent positions of the network and
using the kernel MMD (Gretton et al., 2012) to test whether the latent positions are 115

generated by the same distribution.

2. General TheoreâĹńms for Subsampling
2.1. Problem Setup and Notation

Consider a parameter θ of inferential interest and let θ̂n : Rn×n 7→ R be an estimator
of θ. For certain statistics, it is more natural to view θ̂n as a function on the corre- 120

sponding graph G with vertex set V (G) = {1, . . . , n} and edge set E(G) = {{i, j} | i, j ∈
V (G), Aij = 1}; in these cases, we will use the equivalent graph-theoretic notation. We
will assume θ̂n is invariant to permutations of the vertices. Let τn be a normalizing se-
quence satisfying τn →∞ as n→∞; for statistics with standard asymptotics, τn = n1/2.
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The distribution function of interest is given by:125

Jn(t) = P
[
τn{θ̂n(A(n))− θ} ≤ t

]
. (3)

Let Gn,b denote the graph induced by the vertices 1, . . . , b, which has the corresponding
edge set {(i, j) ∈ Gn | i, j ∈ V (Gn)}. Since subgraphs induced by b vertices all follow the
same distribution under the sparse graphon model (1), ensuing statements related to the
distribution subsampled statistics computed on Gn,b hold for any induced subgraph. For130

each n ≥ 2 and 2 ≤ b ≤ n, let θ̂n,b : {0, 1}b×b 7→ R be an estimator defined on the induced
subgraph; for reasons that will be explained shortly, θ̂n,b need not be equal to θ̂b, but
will be closely related. Let A(n,b) denote the adjacency matrix corresponding to Gn,b and
define the following cumulative distribution function:

Jn,b(t) = P
[
τb{θ̂n,b(A(n,b))− θ} ≤ t

]
. (4)135

We impose the following condition:

Assumption. For a given sequence {bn}n∈N satisfying bn →∞ as n→∞, there exists
some non-degenerate limiting distribution J(t), such that, for all continuity points of
J(·):

|Jn(t)− J(t)| → 0 and |Jn,b(t)− J(t)| → 0.140

The network statistics considered will often be normalized by some power of ρn. Assump-
tion 1 requires that Jn,b converges to J even when θ̂n,b is normalized by ρn.

2.2. Examples
Example 1 (Maximum eigenvalue). Let λ1(w) denote the eigenvalue of the integral op-

erator associated with w; see Section 3 for details. The corresponding cumulative distri-145

bution functions of interest may be expressed as:

Jn(t) = P
[
n1/2{λ1(A(n)/nρn)− λ1(w)} ≤ t

]
Jn,b(t) = P

[
b1/2{λ1(A(n,b)/bρn)− λ1(w)} ≤ t

]
.

For Assumption 1 to be satisfied, ρn = ω(b−1/2
n ) is necessary; however, stronger conditions

are required if the graphon is unbounded; see Section 3 for details.

Example 2 (Count functionals). The count functionals that we consider here were first150

studied in Bickel et al. (2011). We begin by preparing some notation. Let Gn denote a
graph generated by the sparse graphon model, with vertex set V (Gn) = {1, . . . , n} and
edge set E(Gn). Let R be a graph with vertex set V (R) = {1, . . . , p} and let Gn[R] denote
the subgraph induced by V (R). Let p = |V (R)|, e = |E(R)|, and consider the following
graphon parameter, which provides the probability that a given subgraph is contained155

in Gn:

Q̃(R) = ρ−en P (R ⊆ Gn[R]) =
∫

[0,1]p

∏
{i,j}∈E(R)

w(xi, xj) dx1 . . . dxp. (5)

Now, will define some additional notation needed to define our estimator of Q̃(R). We say
that two graphs are isomorphic (R1 ∼ R2) if there exists a bijection σ : V (R1) 7→ V (R2)
such that there is an edge between σ(i) and σ(j) if and only there is an edge present160
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between i and j; mathematically {i, j} ∈ E(R1) ⇐⇒ {σ(i), σ(j)} ∈ E(R2). Let |Iso(R)|
denote number of isomorphisms of R into {1, . . . , p}. In addition, for a graph H such
that V (R) ⊆ V (H), let H[R] denote the subgraph induced by V (R). For some graph H

with |V (H)| = m where m ≥ p, consider the following estimator of Q̃(R;H):

Q̂(R;H) = 1(m
p

)
ρen|Iso(R)|

∑
S∼R

1(S ⊆ H[S]). (6) 165

The corresponding cumulative distribution functions are given by:

Jn(t) = P
[
n1/2{Q̂(R;Gn)− Q̃(R)} ≤ t

]
Jn,b(t) = P

[
b1/2{Q̂(R;Gn,b)− Q̃(R)} ≤ t

]
.

where Gn,b is a subgraph of Gn formed from b nodes. For acyclic graphs, Assumption 1
is satisfied if bnρn →∞ holds.

Example 3 (Sample variance of rooted subgraph frequencies). Now, we will introduce a 170

class of count functionals that provides more local information compared to the count
functionals considered in the previous example. Recall thatR is a k-star if |V (R)| = k + 1,
|E(R)| = k, and the edges in the graph have the form (i, v) for some v ∈ V (S) and each
i 6= v. Let Ck,v(H) denote the total number of k-stars in the graph H rooted at the vertex
v, |V (H)| = m, and Ĉk,x(H) denote the following scaled quantity: 175

Ĉk,v(H) = 1(m−1
k

)
ρen
Ck,v(H).

Now let σ̂2
n(Ck,v(Gn)) denote the sample variance of the rooted subgraph counts:

σ̂2
n(Ck,v(Gn)) = 1

n

n∑
v=1

(
Ĉk,v(Gn)− 1

n

n∑
v=1

Ĉk,v(Gn)
)2

.

Furthermore, let σ2 = limn→∞ σ̂
2
n(Ck,x(Gn)). The corresponding cumulative distribution

functions are given by: 180

Jn(t) = P
[
n1/2{σ̂2

n(Ck,v(Gn))− σ2} ≤ t
]

Jn,b(t) = P
[
b1/2{σ̂2

n(Ck,v(Gn,b))− σ2} ≤ t
]
.

In Supplement S6, we show that Assumption 1 holds so long as ρn = ω(1/b1/2n ). With
the exception of Maugis (2020), who considers Lipschitz functions of local subgraph
counts, theoretical results for local subgraphs are scarce in the literature. However, we
choose not to elaborate on our result in the main text since our argument for establishing 185

asymptotic normality is related to arguments in Bickel et al. (2011). Nevertheless, this
example demonstrates the generality of our approach.

Example 4 (Empirical Degree Distribution Function). Suppose that ρn := ρ; that is
the graphon is dense. Let Di = 1

n−1
∑n
i=1Aij denote the normalized degree of node i

and D(y) =
∫ 1

0 w(u, v) dv denote its conditional expectation given ξi. Consider the cen- 190
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tered and scaled empirical degree distribution function:

Gn(y) = n1/2
[

1
n

n∑
i=1

1(Di ≤ D(y))− y
]
.

Under the conditions w ∈ C3([0, 1]2), w < 1− ε and D(y) > ε for some ε ∈ (0, 1/2), Del-
mas et al. (2021) establish weak convergence of finite dimensional distributions; therefore,
under these conditions, the empirical degree function is amenable to subsampling.195

Example 5 (Likelihood Ratio Statistics). To assess goodness of fit of a stochastic block
model or its variants, one often computes likelihood ratio statistics of the form:

L(Θ0,Θ1) =
supθ∈Θ0 g(A(n), θ)
supθ∈Θ1 g(A(n), θ)

,

where g(A(n), θ) is formed by marginalizing out the unobserved latent variables in the
full likelihood. In Wang & Bickel (2017), asymptotic normality of the likelihood ratio200

is established in the case where the comparison is between the true model and an un-
derfitting model. Therefore, this likelihood ratio statistic is amenable to subsampling; in
fact, calculating the likelihood ratio statistic on subsamples may be computationally ad-
vantageous for fitting methods such as semi-definite programming, studied by Yan et al.
(2018); Amini & Levina (2018); Perry & Wein (2017); Guédon & Vershynin (2016).205

To emphasize, Assumption 1 imposes implicit limitations on the sparsity level. Even
if subsampling is valid for certain sequences, this condition will also impose an implicit
restriction on how slowly bn can grow. Furthermore, in our definition of Jn(t), note that
ρn is unknown. For ease of exposition, we will not introduce estimation of ρn in our
theorems below, but in Section 2.4 we will show that subsampling may still be used to210

approximate Jn(t) when ρn is estimated.
Since Jn(t) is inaccessible, we will approximate it with an empirical quantity defined on

subsamples of the data. Our first subsampling scheme computes the statistic of interest
on each induced subgraph with b vertices. Bhattacharyya & Bickel (2015) refer to this
procedure as uniform subsampling; in the present work, we use the terminology vertex215

subsampling to avoid confusion with the notion of uniform validity, which is discussed
in Supplement S3 due to space limitations. Let Nn =

( n
bn

)
; we will drop the subscripts

when there is no ambiguity. For a given n, let Sb,1, Sb,2, . . . Sb,N denote subsets of size b
constructed from {1, . . . , n}, arranged in any order. Furthermore, let A(n,b,i) denote the
b× b adjacency matrix induced by the nodes in Sb,i. The resulting empirical cumulative220

distribution function may be expressed as follows:

Ln,b(t) = 1
N

N∑
i=1

1
[
τb{θ̂n,b(A(n,b,i))− θ̂n(A(n))} ≤ t

]
. (7)

Since θ is unobservable, it is customary to replace it with its empirical counterpart
estimated on Gn. As long as bn = o(n), this substitution is asymptotically negligible.

2.3. Consistency of Vertex Subsampling for Sparse Graphons225

In Theorem 1, we establish the consistency of vertex subsampling for sparse graphons
under minimal conditions. Our proof hinges on a technique involving the independence
of induced subgraphs when the node sets are disjoint. To make the similarites to the
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theory for i.i.d. processes transparent, we have stated the theorem below in a manner
analogous to Theorem 2.2.1 of Politis et al. (1999) (see Supplement S1.1 for the proof). 230

Theorem 1 (Consistency of Vertex Subsampling for Sparse Graphons).
Assume τb/τn → 0, bn →∞, and bn = o(n). Further suppose that for the sequence
{bn}n∈N, Assumption 1 is satisfied. Then,

i. If t is a continuity point of J(·), then Ln,b(t)→ J(t) in probability.
ii. If J(·) is continuous, then, 235

sup
t∈R
|Ln,b(t)− Jn(t)| → 0 in probability.

iii. Let cn,b(1− α) = inf{ t ∈ R | Ln,b(t) ≥ 1− α}.
Correspondingly define:

c(1− α) = inf{ t ∈ R | J(t) ≥ 1− α}.

If J(·) is continuous at c(1− α) then, 240

P
[
τn{θ̂n(Gn)− θ} ≤ cn,b(1− α)

]
→ 1− α as n→∞.

Remark 1. The above result may be generalized in several ways. The latent positions
may instead follow any distribution as in Hoff et al. (2002). In addition, the above theorem
holds for weighted/directed graphs as well as graphon models with nodal covariates, so
long as the pairs (ξi, Xi) ∈ Rp are i.i.d. 245

We would like to mention that several auxiliary results in Politis et al. (1999) may be
proved following similar reasoning. In particular, one does not need all

(n
b

)
subsamples

of the data; a stochastic approximation involving B →∞ subsamples chosen with or
without replacement suffices, following analogous reasoning to the proof of Corollary
2.4 of the above reference. However, certain results, such as the validity of subsampling 250

with a data-driven subsample size (Theorem 2.7.1 of Politis et al. (1999)) require slightly
stronger assumptions since Jn,b(t) need not be equal to Jb(t). We will not pursue this
here, but we would like to mention that a similar issue arises in Section 2.5; granting
Assumption 2 should be enough to extend the aforementioned result.

2.4. On Subsampling with an Estimated Sparsity Parameter 255

While ρn is assumed to be known in the above result, in practice, it will need to be
estimated from data. A natural idea is to plug in the following estimator:

ρ̂n = 1(n
2
) ∑
i<j

Aij .

In Theorem 1 of Bickel et al. (2011), it is shown that ρ̂n/ρn converges to 1 at a
√
n-

rate; therefore, replacing ρn with ρ̂n turns out to be too large of a perturbation to be 260

considered negligible. One may often use the Delta Method to establish convergence with
an estimated sparsity parameter, but this often leads a higher variance. The maximum
eigenvalue appears to be an exception; see Supplement S7 for a figure depicting this.

Fortunately, in many situations we may still approximate the sampling distribution
through subsampling. In essence, if we plug in ρ̂n estimated on Gn in each of the sub- 265

sampled statistics, it will turn out that the estimate is accurate enough relative to the
subsampled statistics so that it is asymptotically negligible. For confidence intervals, the
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cost is a slight loss of efficiency, as one needs to consider a functional calculated on a
subgraph with mn = o(n) as the centering of interval. However, this choice of centering
does have the secondary benefit of reducing bias, which in finite samples substantially270

affects the coverage properties of subsampling; see Section 4 for further discussion.
Suppose that θ̂n(A(n); ρ) = ρ−sf(A(n)) and θ̂n,b(A(n,b); ρ) = ρ−sfb(A(n,b)) for some s ≥

0 where the function f is independent of ρ, a sparsity parameter or estimate thereof. All
of the examples considered in Section 2.2 may be expressed in this form and further have
τn = n1/2. Define the following subsampling estimate:275

L̂n,b(t) = 1
N

N∑
i=1

1
[
τb
{
θ̂n,b(A(n,b,i); ρ̂n)− θ̂n(A(n); ρ̂n)

}
≤ t
]
. (8)

Furthermore, let ĉn,b(·) denote the quantile function associated with the distribution
L̂n,b(·). We have the following result; the proof is given in Supplement S7. Note that in
the proposition below, τn = n1/2 is imposed for simplicity but is not necessary.

Proposition 1 (Subsampling With Estimated Sparsity). Suppose that the as-280

sumptions in Theorem 1 are satisfied. Then, i.− iii. of Theorem 1 hold for L̂n,b(t).
Moreover, if mn = o(n), τn = n1/2, and J is continuous at c(α/2) and c(1− α/2),

P

(
θ ∈

[
θ̂n,m(A(n,m); ρ̂n)− ĉn,b(1− α/2)

τm
, θ̂n,m(A(n,m); ρ̂n)− ĉn,b(α/2)

τm

])
→ 1− α.

(9)

2.5. Consistency of p-subsampling for Sparse Graphons
We will now consider the validity of a subsampling procedure that involves repeatedly285

p-sampling a given graph. The notion of p-sampling was introduced by Veitch & Roy
(2019) in the context of sampling for graphexes. This procedure is described below.

Definition 1 (p-sampling). A p-sample of G, denoted Smplp(G), is a random sub-
graph obtained by including vertices independently with probability p, and taking the in-
duced subgraph, with isolated vertices removed.290

Given a size n realization of a graphex, a p-sampling of the graph generates a smaller
graphex; therefore, p-sampling may be viewed as the natural sampling mechanism for
this process. Even under certain forms of misspecification for the sampling process, our
result demonstrates that subsampling still produces valid inferences for sparse graphons
under weak assumptions on the (expected) subsample size.295

Since the subsample size is random, we will now denote it with Bi. Let X
(n)
ij ∼

Bernoulli(pn); this random variable indicates whether the jth node is included in the
subsampled graph before the deletion of isolated vertices. We will assume the Bernoulli
trials are generated independently from Gn. Denote the ith p-sample Smplp,i(Gn). Fur-
thermore, let M denote the number of p-subsamples. In addition, we will modify As-300

sumption 1 to accommodate the random sample size. Consider the following condition:

Assumption. For sequences {ln}n∈N and {un}n∈N satisfying ln < un and ln →∞, there
exists some non-degenerate limiting distribution J(t) such that, for all continuity points
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of J(t):

|Jn(t)− J(t)| → 0 and sup
ln≤j≤un

|Jn,j(t)− J(t)| → 0. 305

Now, let

ln = bnpn − 3(npn logn)1/2c, un = dnpn + 3(npn logn)1/2e. (10)

Recall the following Chernoff bound for binomial random variables, which yields, for
0 < ε < npn:

P

∣∣∣∣ n∑
j=1

X
(n)
ij − E(X(n)

ij )
∣∣∣∣ > ε

 ≤ 2 exp
(
−ε2

3npn

)
. (11) 310

In light of Assumption 2 and the Chernoff bound, our choice of ln and un ensures that the
sequence with a random sample size converges in distribution with high probability. In
all of the examples considered, Assumption 2 holds so long as suitable sparsity conditions
for each example are met. If pn is chosen so that a size npn graph with sparsity parameter
ρn satisfies these sparsity conditions, then Assumption 2 holds since the subsample sizes 315

are all Θ(npn). However, as a technicality, Assumption 2 is stronger than Assumption 1.
Since the number of vertices of the input graph is random, we will have to be slightly

careful in formally defining θ̂n,Bi(·). Let θ̂n,Bi(·) : ∪nb=0{0, 1}b×b 7→ R be equal to θ̂n,j(·)
when |V (Smplp,i(Gn)| = j for j ≥ 2 and 0 otherwise. Define the following empirical dis-
tribution function of the statistic of interest following a p-subsampling procedure: 320

L′n,B(t) = 1
M

M∑
i=1

1
[
τBi

{
θ̂n,Bi(Smplp,i(Gn))− θ̂n(Gn)

}
≤ t
]
. (12)

We are now ready to state our result. Our proof strategy involves approximating the
empirical cumulative distribution function of the p-subsampled statistic with a convex
combination of U-statistics, corresponding to its conditional expectation given Gn. This
approximation demonstrates that vertex sampling and p-sampling are closely linked, 325

which is an interesting concept in its own right. See Supplement S1.3 for details.

Theorem 2 (Consistency of p−subsampling for Sparse Graphons). Assume
that τn = nα for some α > 0, M →∞, npn →∞, and pn = o(1). Further suppose for
ln, un given in (10), Assumption 2 is satisfied and (ρn, w(u, v)) satisfy ρn = ω(log ln/ln),
and w(ξi, ξj) ≥ c almost surely, where c > 0. Then, i.− iii. of Theorem 1 hold for 330

L′n,B(t).

Remark 2. The conditions on (ρn, w(u, v)) above ensure that the deletion of isolated
vertices is negligible. However, certain statistics such as eigenvalues are invariant to
deletion of isolated vertices; Lovász (2012) refers to these graph functionals as isolate-
indifferent. For such statistics, these explicit conditions are not necessary. 335

3. Weak Convergence of Nonzero Eigenvalues of Sparse Graphons
In this section, we state a weak convergence result for eigenvalues of adjacency matrices

generated by sparse graphons of finite rank. Our motivation is to derive conditions under
which subsampling may be used to conduct inference for eigenvalues, which capture
salient features of the underlying graph. Eigenvalues of the adjacency matrix have been 340
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used widely in applied research. For example, the maximum eigenvalue of brain functional
networks have been used to estimate mental fatigue (Li et al., 2020). The inverse of the
largest eigenvalue equals the epidemic threshold in a network (Van Mieghem et al.,
2009) and is proportional to its synchronization threshold (Restrepo et al., 2005). The
eigenspectrum of adjacency matrices are often used to compare two networks (Gera et al.,345

2018; Mukherjee et al., 2017). The ratio of eigenvalues has been used to understand how
individual vs. collective motivations drive complex socio-economic networks (Iranzo et al.,
2020). The spectral gap between the two largest eigenvalues of an adjacency matrix is
used to measure expansion properties of networks (Hoory et al., 2006) and have been used
to conduct exploratory analysis of large social networks (Malliaros & Megalooikonomou,350

2011). The spectral gap is also used to understand how fast a dynamic process in a
network will reach the steady state (Mieghem, 2010).

To our knowledge, we are the first to consider inference for eigenvalues under the sparse
graphon model. Limit theorems are one of the most important topics in random matrix
theory, so our result here is of independent interest. The main tools we use are results on355

random matrix approximations of integral operators due to Koltchinskii & Giné (2001)
and refined eigenvalue perturbation bounds developed by Eldridge et al. (2018). To use
the latter, an upper bound on the operator norm of the centered adjacency matrix is
needed; however, sharp results (e.g. Vu (2007)) require independent entries. To handle
the graphon dependence structure, we develop a technique that involves conditioning on360

the latent positions and using Egorov’s Theorem to control the conditional probability
uniformly on a high probability set.

For Erdős-Rènyi graphs, limiting distributions of the eigenvalues are well-known. Af-
ter appropriate centering and centering, the leading eigenvalue of the adjacency matrix
generated by Erdős-Rènyi graphs has been shown to converge to the normal distribution365

by Füredi & Komlós (1981). The recent work of Tang (2018) considers limiting distribu-
tions for (dense) random graphs centered at a data-dependent quantity, which rules out
subsampling. Beyond this, weak convergence results were not previously known for more
general classes of models.

We would like to note that Borgs et al. (2012) show that the scaled eigenvalues of an370

adjacency matrix generated by a graphon converge to a limiting quantity. Their result
is a law of large numbers for spectra; what we show is along the lines of a central limit
theorem. We will now introduce some concepts needed to state our result.

Let w : [0, 1]2 7→ R be a symmetric element of L2([0, 1]2). Consider the following inte-
gral operator associated with w, which we will denote Tw : L2([0, 1]) 7→ L2([0, 1]):375

Twf =
∫ 1

0
w(u, v)f(v)dv. (13)

By the spectral theorem for compact, self-adjoint operators (see for example, Corollary
4.10.2 of Debnath et al. (2005)), there exists an orthonormal collection of eigenfunctions
{φr, r ∈ J}, where J is either finite or countably infinite, and a sequence of real numbers
{λr, r ∈ J} satisfying

∑
r∈J λ

2
r <∞ such that:380

w(u, v) =
∑
r∈J

λrφr(u)φr(v). (14)

in the L2([0, 1]2) sense. We will consider the ordering λ1 ≥ λ2 ≥ . . . > 0 > . . . ≥ λ−2 ≥
λ−1, where negative indices correspond to negative eigenvalues. We will not consider zero
eigenvalues. We will denote the eigenvalues associated with w as λr(w).
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Let Ã(n) = A(n)/nρn. In the theorem below, we will establish conditions under which: 385

Zn,r = n1/2{λr(Ã(n))− λr(w)} (15)

weakly converges to a limiting distribution Z∞,r. In fact, we may show stronger state-
ments involving convergence of joint distributions. While we require that the kernel is
finite rank, this assumption is, strictly speaking, not necessary for establishing marginal
convergence; see Remark 3 for details. We will now state our result below under various 390

assumptions on the pair (ρ, w). A proof of this theorem is given in Supplement S2.1.

Theorem 3 (Weak Convergence of Nonzero Eigenvalues). Let {Gn}n∈N be
a sequence of graphs generated by the model (2). Suppose w(u, v) is an element of
L2([0, 1]2) with an eigendecomposition of the form:

w(u, v) =
k∑
r=1

λrφr(u)φr(v) 395

for some k <∞ where λr 6= 0 for all 1 ≤ r ≤ k, and one of the following conditions are
satisfied:

A. (Boundedness) ‖w(u, v)‖∞ <∞ almost surely, ρn = o(1) and ρn = ω(n−1/2).
B. (sub-Weibull) There exists some universal constant K <∞ and γ > 0 such that:

E

[
exp

{
w(ξi, ξj)− E(w(ξi, ξj))

K

}γ]
≤ 2. (16) 400

Furthermore, for 1 ≤ r ≤ k, the eigenfunctions satisfy:∫ 1

0
φ4
r(u) du <∞. (17)

Further suppose that ρn = O(n−δ) and ρn = ω(n−1/2+δ) for some δ > 0.
C. (Moment) Suppose that E[ws(ξi, ξj)] <∞ for some s > 3 +

√
5. Further sup-

pose the eigenfunctions satisfy (17) and ρn satisfies n1+δρs−2
n = o(1) and ρn = 405

ω
(
n(2−s+δ)/2s

)
for some δ > 0.

Let Zn = (Zn,1, . . . , Zn,k), where Zn,r are given by (15). Then, there exists some limiting
random variable Z∞ such that:

Zn → Z∞ in distribution. (18)

Furthermore, if λ1, . . . , λk are distinct, then Z∞ is multivariate Gaussian. 410

Remark 3. Following Theorem 5.1 of Koltchinskii & Giné (2001), one may impose the
following condition for graphons that are not finite rank. For some Rn →∞, suppose
that w satisfies

∑
|r|>Rn

λ2
r = o(n−1). Further suppose that: ∑

|r|≤Rn, |s|≤Rn

∫
φ2
rφ

2
sdP

×
 ∑
|r|≤Rn, |s|≤Rn

(λ2
r + λ2

s)
∫
φ2
rφ

2
sdP

 = o(n).

Moreover, suppose that
∑
r∈Z |λr|φ2

r ∈ L2(P ). Then, one may show convergence of finite- 415

dimensional distributions of the nonzero eigenvalues of interest. However, it seems that
verifying these conditions is non-trivial outside of the finite-rank case. For instance, it
appears that smoothness properties by themselves do not imply the conditions above.
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Remark 4. Cases B and C impose various tail conditions on unbounded graphons,

which are more expressive than bounded graphons (Borgs et al., 2019), allowing a wider420

range of degree distributions. However, they complicate arguments that involve condi-
tioning on the latent positions. To overcome this difficulty, we use Egorov’s Theorem to
establish uniform convergence of conditional probability statements over a high proba-
bility set, which implies convergence in probability of a nuisance term.

Remark 5. For bounded graphons, we show in Supplement S5.2 that the conditions in425

the previous remark may be simplified. For this case, we require ρn = ω(n−1/2), Tw is
trace class, and for some Rn →∞, Rn

n (
∑

1≤r≤Rn

1
λ2

r
)3/2 → 0. The trace class condition

implies
∑
r∈Z |λr|φ2

r ∈ L2(P ); see for example, the proof of Proposition 3.2 of Lei (2021).

We will now discuss some of the conditions in our theorem. Finite rank graphons are
equivalent to the rich family of generalized random dot product models (Rubin-Delanchy430

et al., 2022), which are particularly expressive when the dimension of the latent space is
allowed to be any fixed natural number. In addition, while we require that the graphon
is rank k, the rank need not be known a priori. For any k′ ≤ k, the theorem above
provides joint convergence of the k′ nonzero eigenvalues. Furthermore, since we derive
joint convergence, one may use the Delta Method to derive weak convergence for certain435

differentiable functions of the nonzero k′ eigenvalues. We provide examples of eigenvalue
statistics that may be of interest below.

Example 6 (Statistics Based on Disparities between Eigenvalues). For the purpose of
comparing two networks, it may be of interest to consider certain statistics of two eigen-
values. Two natural choices are spectral gaps and eigenvalue ratios, as defined below:440

θ̂gap(A(n)) = λ1(A(n))− λ2(A(n))
nρn

, θ̂ratio(A(n)) = λ1(A(n))
λk′(A(n))

. (19)

Example 7 (Approximate Trace). Another important statistic in network analysis is
tr(Ap). This statistic is related to subgraph counts; more precisely, it provides the number
of closed walks of length p from any vertex back to itself. It is well known that

tr(Ap) =
n∑
r=1

λpr(A).445

Consider the statistic θ̂trace,p,k′(A(n)) =
∑k′
r=1 λ

p
r

(
A(n)/nρn

)
.

This statistic is a suitable approximation to its population counterpart
∑k′
r=1 λ

p
r(w).

While our result here is sufficiently general, it should be mentioned that, even for
bounded graphons, our theorem requires ρn = ω(n−1/2). In general, it seems difficult
to improve the eigenvalue perturbation bounds to weaken conditions for concentration;450

O’Rourke et al. (2018) derive similar bounds under a low rank hypothesis for the mean
matrix. In addition, for sub-Weibull and Lp graphons, we impose upper bounds on the
rate of decay of ρn, which may seem unusual. These upper bounds allow us to control the
difference between eigenvalues of the mean matrix, with entries given by ρnw(ξi, ξj) ∧ 1,
and a matrix with entries given by ρnw(ξi, ξj). In essence, if we allow w to be unbounded,455

we need a sparser graph sequence to observe most of the uncensored values of w(ξi, ξj).
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4. Simulation Study

We investigate the finite-sample properties of confidence intervals for various eigenvalue
statistics formed by subsampling. We consider two sparse graphon models; for these
models, it will be more natural to consider the following parameterization: 460

hn(u, v) = P (Aij = 1 | ξi = u, ξj = v) = νnh(u, v), (20)

where h(u, v) is a dense graphon and νn is a sparsity parameter. It then follows that
ρn = νn

∫
h(ξi, ξj) dP . We study the performance of our method for sample sizes ranging

from n = 1000 to n = 7000 and sparsity parameters ranging from νn = n−0.1 to νn =
n−0.45. For vertex subsampling, we consider subsample sizes of the form bn = cn/ logn 465

for c ∈ {1, 1.5, 2, 2.5, 3}; for p-subsampling, we consider pn corresponding to an equivalent
expected subsample size.

The data generating processes considered in our simulation study are described below.
For each of these processes, we approximate the true parameter λi(w) by simulating
a graph of size n = 20000 and νn = 1. We then approximate the population parameter 470

with λi(A(n))/nρ̂n. We assess coverage by counting the number of times the parameter
falls within our confidence interval; to this end, we simulate the model 500 times and
construct a confidence interval from N = 500 subsamples for each iteration. We construct
confidence intervals of the form (9), with m = 5n/ logn.

4.1. Stochastic Block Model 475

We consider a three class stochastic block model studied in Lei (2021), with parameters:

B =
( 1/4 1/2 1/4

1/2 1/4 1/4
1/4 1/4 1/6

)
, π = (0.3, 0.3, 0.4). (21)

The corresponding graphon is rank 2 and has one positive and one negative eigenvalue,
with λ1 = 1.035 and λ2 = −0.267.

4.2. Gaussian Latent Space Model 480

We also investigate the properties of our procedure for a graphon model that is not low
rank. The following model is a special case of the Gaussian latent space model studied
in Rastelli et al. (2016). Let ξi ∼ N(0, 1) and define:

hn(u, v) = νn exp
{
−25(u− v)2}. (22)

We study the behavior of our procedure for the top 3 positive eigenvalues; the associated 485

parameters are: λ1 = 1.311, λ2 = 1.147, and λ3 = 1.011.

4.3. Simulation Results
Our simulation results suggest that p-subsampling and vertex subsampling have very

similar coverage properties for eigenvalues. It also appears that subsampling offers strong
finite sample performance for an appropriate choice of subsample size. Even for the most 490

difficult sparsity setting νn = n−0.45, we see that coverage of our subsampling procedure
with an appropriately chosen subsample size approaches the nominal level as n increases
for the eigenvalues considered.

Another takeaway is that the sparsity level increases, the performance of subsampling
becomes more sensitive to the choice of subsample size. Nevertheless, it is reassuring that 495

certain subsample regimes perform well in nearly all settings considered. Subsampling
appears to perform best with larger subsampling sizes, corresponding to bn = 2.5n/ logn
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Fig. 1: Sampling and subsampling distributions for inference on λ2(w) of the Gaussian
latent space model. The sampling distribution is formed from 500 graphs, where for
each graph of 7000 vertices, we compute the eigenvalues of interest on a size 5n/ logn
subsample. The subsampling distributions are formed from 500 subsamples of a given
graph with n = 7000 vertices, and an (expected) subsample size of bn = 3n/ logn.
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Fig. 2: Sampling and subsampling distributions for inference on λ1(w) of the stochastic
block model. Simulation settings are identical to those described in Figure 1.

and bn = 3n/ logn. This is most likely due to the bias of our estimator; for larger sub-
sample sizes, the bias of the subsampled eigenvalues and that of the size m functional
are more likely to be close.500

We present the distributions of the subsampled λ2 for a network with 7000 nodes
generated from a Gaussian latent space model (Section 4.2), with average degree decaying
from the left to the rightmost panel in Figure 1. The behavior of λ1 (see the table
in Section S8 of the Supplement) shows less degradation as one increases sparsity. We
include similar plots of λ1 and λ2 for the stochastic block model (Section 4.1) in Figures 2505

and 3. As Figures 1 and 2 indicate, the bias appears to be less problematic for eigenvalues
that are well-separated from the bulk.

In Supplement S9, we also provide a comparison of subsampling with the empirical
graphon bootstrap of Green & Shalizi (2022) with resample size n and a semiparametric
bootstrap for random dot product graph models proposed by Levin & Levina (2019).510

Neither procedure has been proven to work for eigenvalues and our simulation study
suggest that they may not be suitable for doing inference for eigenvalues.

5. Real Data Example: Facebook Networks
Using Facebook networks from 100 universities in 2005 (Traud et al., 2012), we perform

two sample tests to see whether two social networks are generated by the same sparse515
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Fig. 3: Sampling and subsampling distributions for inference on λ2(w) of the stochastic
block model. Simulation settings are identical to those described in Figure 1.

graphon. Facebook networks are well-suited for our method, as they are typically large
and not too sparse. They are also undirected, ensuring real-valued spectra.

We will consider a two-sample test based on subsampled eigenvalues for comparing
social networks of different universities, similar to the two sample test with subsampled
count functionals used by Bhattacharyya & Bickel (2015). Here, we examine the relative 520

merits of using subsampled eigenvalue statistics for comparing two networks.
Before proceeding, we would like to mention some of the strengths and weaknesses of

the eigenvalue approach compared to the subgraph approach that are not directly related
to the power of the test. First, note that the entire spectrum of a symmetric matrix can
be computed in O(n3) time and calculating the top few eigenvalues can be performed 525

even faster. For count functionals, a brute-force subgraph search with p = |V(R)| has
complexity O(np). However, as noted in Bickel et al. (2011), for sparser graphs, certain
functionals such as kl-wheels can be counted faster. From a computational perspective,
eigenvalue statistics generally may be preferable for network comparisons. On the other
hand, eigenvalue statistics require stronger conditions on the sparsity level; consequently, 530

count functionals may be safer to use for sparser graphs.
With eigenvalue statistics, it is also not clear a priori which statistics will be most

effective at distinguishing two networks. To limit false discoveries, we consider a sample
splitting procedure in which one subnetwork is used for formulating hypotheses and the
other is used for testing the hypotheses. The most natural procedure under the model 535

(Eq 1) is node-splitting, in which nodes are randomly split into two disjoint sets and the
corresponding induced subgraphs are used. Under our model, the induced subgraphs are
independent and thus, inferences based on node-splitting are valid.

5.1. Data Analysis Results
In this section, we compare the Facebook networks of University of Pennsylvania 540

(Penn) with Columbia and Yale with Princeton. For each comparison, we randomly
split the vertex set of each network into two parts. The “training” halves are used to find
k (k ≤ 5) such that λk has the largest difference between the training subnetworks of
the two exploratory networks. Then, on the held-out subnetworks, we use subsampling
to perform a two-sample test. We mainly consider principal eigenvalues since inference 545

becomes harder for eigenvalues closer to the bulk. For each network, a 97.5% confidence
interval is constructed for the test statistic. If the confidence intervals are disjoint, we
may reject the null hypothesis that the graphs were generated by the same graphon
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Schools n Test statistic Value 97.5% CI Decision
Columbia 5885 λ1/mρ̂n 2.757 (2.202, 3.080) Reject H0

Penn 7458 2.067 (1.830, 2.166)
Princeton 3298 λ4/mρ̂n 0.943 (0.771, 0.957) Fail to reject H0

Yale 4289 1.019 (0.846, 1.011)

Table 1: Two-sample test results

with a significance level of α = 0.05. The confidence intervals are constructed via vertex
subsampling, with a subsample size given by bn = 2.5n/ logn and mn = 5n/ logn.550

As shown in Table 1, we reject the null hypothesis for Columbia vs Penn, but fail to
reject for Princeton vs Yale. Eigenvalue plots (see Supplement S10) suggested that it
would be difficult to distinguish between the spectra of the Yale and Princeton networks,
so it is not surprising that we were not able to reject the null hypothesis here.

We would like to emphasize that the validity of subsampling hinges on a weak conver-555

gence result, which requires a non-trivial sparsity condition. Since our notion of sparsity
pertains to a sequence of graphs and we only have one observation for each school, it is
difficult to say whether this condition is satisfied. However, we would like to note that
one would expect the confidence intervals to be very wide if the graphs were too sparse,
which does not appear to be the case.560

6. Discussion
In this paper, we establish the validity of two subsampling schemes for network data.

Our work leaves open the possibility of more computationally tractable approaches to
inference for count functionals of sparse graphons. If a weak convergence result can be
shown for approximate subgraph counting methods, then subsampling may be established565

using the results in this paper. It would be interesting to investigate the relationship
between the maximum eigenvalue and the average degree for graphon models in greater
detail. For general graphs, it is well-known that the maximum eigenvalue is bounded
between the average degree and maximum degree; see, for example, Spielman (2012).
For sparse graphons, our simulations in Section S7 of the Supplement suggest that the570

maximum eigenvalue and the average degree are also highly correlated under general
conditions. It would be of interest to derive conditions under which an estimator of
the maximum eigenvalue of the graphon operator with an estimated sparsity parameter
outperforms an oracle estimator that uses the true sparsity parameter.
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Supplementary material

The supplementary material contains proofs of the main theorems, results and proofs
on uniform validity, weak convergence results for the sample variance of rooted stars, 580

a comment on a phenomenon involving the maximum eigenvalue, additional simulation
results including comparison to other resampling methods, and additional details on real
data analysis.
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