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A Geometric structure of normalized points from a cone
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Lemma A.l. Lety, = z;/|z;

> 1, and ¢; =

T T T T
Proof. yI' = (g uxﬁiu - ||n:?3z1pu miiYp = 1] Yp. Cleatly [m{Yp| =
152 migyipnll < 32 mijllyrg | = X, miy = miLsor; > 1. O
ProofofLemma@ Since rank(P) = K, we have VEVT = P = pI‘@B@TI‘. W.L.O.G,
let ©(1,:) = I, then VpEV?T = pI'pBO'T. Now VE = PV = pI'@BO'TV =
re(BO'T)V = I'O(I','VpEVY)V = I'@I';'V4E, right multiplying E~! gives V =
r@r;lvp. Also consider that VpEVIT;. = pI'pBTI'p, Vp is full rank. O

B Identifiability of DCMMSB-type Models

Lemma B.1. For DCMMSB-type models such that f(0;) = 1, Vi € [n] for some degree 1 homoge-
neous function f (e.g., f(6) = ||0||,), the sufficient conditions for (®,B,T') to be identifiable up
to a permutation of the communities are (a) there is at least one pure node in each community, (b)
> % = n, (¢) B has unit diagonal.

Proof. From Lemawe have V = F@F;lV p and V p is full rank. Suppose two set of parameters
{r®, e® BM} and {I®, @ B} yield the same P (W.L.O.G., we abort p in B) and each
has a pure node set P; and P, and W.L.O.G., assume the permutation of the communities is fixed,
ie, 05 =©%) =1 Then,
rOeM(ry) Vs, =V =T ([I®) 1Vp,. 3)
Taking indices P, and P, respectively on V, we have,
2 2)\— -

Vp, =TP0R () 'V, and Ve, =TH 0L (TH) Ve, (4)

Then,
2) 2(2) (2 —1(1) o (1) (1) —
Ve, =IE e () 'Th)eR) (ry) Ve,
—  1=ryelrH)'rYel)(rh))=t, as Vp, is full rank. 5)

1
As I‘gl)@gl) (1"5322))_1 and I‘g,lz)@gjlz) (1"5,11))_1 are all nonnegative, using Lemma 1.1 of [6], they are

2) (2)

both generalized permutation matrices. Also since T < (1“§32>)—1 are diagonal matrix, © " must be
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a permutation matrix as f (052)) =1, Vi € [n], and f is homogeneous with degree 1. So nodes in P;
are also pure nodes in ®(?). With same arguments, nodes in P; are also pure nodes in @1, So the
pure nodes match up.

Now since VpEVE = T'pBT p, we have ') BOT) = Vp EVp, = T BATE) . As BO

and B(?) both have unit diagonal, we must have 1“5,11) = cl"gl) forc =4/ Bﬁ) / Bﬁ). Now substituting
P, with Py in Eq. (3)), and using V p, has full rank, we have,

2)\— — 2)\—
1'\(2)@(2)(1‘;1)) 1_ F(l)@(l)(rg)ll)) 1_ 1-1(1)@(1)(1‘3)1)) e,

which gives T @) = (T » @), applying f(-) to rows’ transpose on both side, since f(6'")) =
£(0) = 1,Vi € [n], and f is homogeneous with degree 1, we have T(1) = I'®. Now as
1’T1M1, = 17T®1,, = n from condition (b), we must have ¢ = 1, then T") = T'®), and this
immediately gives ©1) = @, Finally, ;) BOTY) = TVBATE) = 1)) B@TY), and this
gives B = B®),

O

C Algorithms

In this section we provide the detailed algorithms for parameter estimations of DCMMSB, OCCAM
(Algorithm[A)) and Topic Models (Algorithm [B). These algorithms both reply on the one class SVM
(Algorithm [I) for finding the corner rays and then use those for parameter estimation, the details
of which vary from model to model. Note for Algorithm[A] step[7]is to normalize rows of © by ¢;
norm, if we normalize by /5 norm, then it can be used for estimation of OCCAM.

Algorithm A SVM-cone-DCMMSB

Input: Adjacency matrix A € R™*™, number of communities K
QOutput: Estimated degree parameters I, community memberships O, and community interaction
matrix B o

Get top-K eigen-decomposition of A as VEVT

Normalize rows of V by /5 norm

Use SVM-cone to get pure node set C' and estimated M

Ve = V(C, 1), get N¢ from row norms of V&

De = \/diag(NchEVch)

F= dlag(MDclK)

G) F-1MD

I= nF/(lTFl) rc =1(C,C)

AN A A R

Ju—

Algorithm B SVM-cone-topic

Input: Word-document count matrix A € RV *P

Output Estimated word-topic matrix T
: Randomly splitting the words in each document to two halves to get A; and A,

Normalize columns of A; and As by /1 norm to get A and A,
Get top-K SVD of U = A1 AT as VEVT

Normalize rows of V by /5 row norm

Use SVM-cone to get pure node set C' and estimated M
Normalizing columns of D¢ by ¢; norm to get T

, number of topics K
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D Corner finding with One-class SVM with population inputs

Lemma D.1. If Projcouy(y1)(0) is an interior point in Conv(YX), then One-class SVM can find

all the K corners with m;; = 1 as support vectors given y;, i € [n] as inputs. And a sufficient
condition for this to hold is (Y pY5)~1 > 0.

Proof. The primal problem of One-class SVM in [7]] is
1
min §||WH2 —b st. wly; >b,i¢€[n]

First of all note that b > 0 because if b < 0, we can always make b = 0 to satisfy the condition and
decrees the value of the object function. From Lemma we have yiT = riqSiTY p. Asr; > 1,
if there exists (w,b) that wly; > b, i € I, we have wly; = 1, Ypw = r; Zj gb,;ijyI(j) >
r;b > b, i € [n]. So we can reduce the problem to using points ¢ € I as inputs. Furthermore, we
consider an equivalent primal problem and its dual:

. ) 1
Primal: max b Dual :  min 3 lz]: ﬁzﬂjy?yj (6)
st. |w| <1, why; >b,iel st. Y Bi=1,0>0,i€el

The dual problem is basically to find a point in Conv(Y%) that has the minimum norm (closest to
origin). Now denote the optimal function value for the dual problem as Ly, and for any subset
S C 1 let Ly, s, be the optimal value when we want to find a point in Conv(YIT_-,( S :)) that has the
minimum norm.

Let N € R™*™ be a diagonal matrix such that N;; = 1/||z;||, then Yp = NpZp is also full
rank. If for 3* = argming Lv . (3), each coordinate is strictly larger than 0, it is easy to see that
Ly, > LYP( s since Y p is full rank. So a sufficient condition for One-class SVM to find all K
corners of Ly, is 3* > 0, which means the closet point to origin in Conv(Y5) is an interior point
(also the projection of origin to Conv(YZ%) ). Now we will show a sufficient condition for this.

Suppose the 3* > 0. First let us find a hyperplane (w, d) that is through columns of Y% with d < 0
(since Y p is full rank, we must have d # 0). We have Y pw = d1. Since the distance from origin to

hyperplane (w, d) is %, Projcony(y1) (0) is an interior point in Conv(Y%), we have
d w
Y18* = Projgony(yz)(0) = —— (7)
i Conv(¥e) [[wil fwll
Then,
dwlw
T~T %
w YpB'=—>F =d.
" [[wi[®

As wI'YL = d17, we have d17 3* = d, so 17 3* = 1. So the only condition left to be satisfied is
that 3* > 0, using Eq. (7),
dY pw  d(d1)

YrYEBt = =
Iwiiz llwl?”

so B* = L (YpYE)~11 > 0 and all we require is:

v

(YpYE)'1>0.

Proof of Theorem 2.3 Using Lemma 2.1 we have:
I=VI'V=Vir,'e'r’er,'vey = (vpVvh)'=r;'e’r’er;. ®



Since Yp = NpV p, we have:
(YpYE) ! =N,'T'0'T?0r,'N . 9)

On the RHS of Eq. (9), as N; , 1"131 and I" are all diagonal matrix with strictly positive diagonal
elements, then diagonal of (Y pY%)~! must be strictly positive, as the i-th element on its diagonal is
proportional to | T'O(:,)||?, and since © is nonnegative, we can easily get that (YpYZ5)~11 > 0.
So for DCMMSB-type models, it is always true that the closet point in Conv(YZ%) to origin is an
interior point of Conv(Y%). O

E Corner finding with One-class SVM with empirical inputs

Lemma E.1. Let e = max; ||ly; — ¥:||. Denote (w,b) and (W, b) be the optimal solution for the
primal problem of One-class SVM in (@) with population (y1,y2,- - ,¥n) and empirical inputs

(Y1,¥2, - ,¥n) respectively, then |l§ b <e

Proof. First we have wl'y; > b,Vi € [n], and |[w? (3, —y:)|| < e. Thenw’y; = wly, +wT (3, —

vi) > b—e. As (w,b— €) is a feasible solution of the primal problem with empirical inputs, by

optimality of b, we have b > b — e. Similarly we can getb > b —¢,s0 |b —b| < e. O

Lemma E.2. Let (w,b), (W,b) be the hyperplane of the optimal solution of One-class SVM with

population and empirical inputs respectively, then ||W — w| < (e, for ¢ = Mﬁ <
4K

n(Ax(YPYE))Eo"

Proof. Let §;, | € I be the solution of the dual problem in Eq. (6) with population inputs,

. . B
from the construction of this dual problem, we know w = i Zl“ /;); E | > s Biyill = b,
Ly

ler

and B = (Br1), Br2),  Bi)) = b*(YpYH)™'1, as shown in Lemmii SAo w =
YIT;.ﬁ/b = bY%(YApYITJ)*ll. From the condAition of the primal problem, YpWw > b1, then
we have Ypw = Ypw — (Yp — Yp)W > (b — €)1 > (b — 2¢)1. Then there exists a vector
c > 0 such that Ypw = (b — 2¢)1 + c. Now let W = YL + W, where YpWw, = 0. So
Ypw=YpYEp = (b—2¢)1+c, which gives w = YE(YpYE)"1((b—2¢)1 +c)+W,. Since
W] = 1, we have
L= |[w]* = ((b - 201 +¢)"(YpYp) " ((b—26)1 + ) + WL

=021T(YpYE) 11+ 2017 (YpYE) " Hc —2e1) + (c — 2¢1)T(YpYE) L (c — 261) + || |2
Since 1 = ||w]|? = b*1T(YpYL) 11, we have

0<(c—21)"(YpYD) H(c—2e1) + |[[Wo|?> = —2017 (YpYF) '(c — 2¢1) (10)

= 2017 (YpYh) te+4bel T (YpYT) !
which uses that (Y pYZ%) ™! is positive definite. This gives
2017 (YpYE) te < 4belT (YpYE) ™11 = 4be/b?
- (mln 17(YpYE)te)|clli < 17(YpYE) te < 2¢/b?,

and by Condition[2] we know (min; 17(YpYZL)"te;) > n, s0 ||| < [[c[1 < 2¢/(nb?).

Let P be the set of support vectors returned by empirical One-class SVM, and B as the optimal
solution for the dual problem, then W = Y 53/b and } jep B; = 1. Now we will give an upper
bound on ||W ||. For any v € span(Y p), we have |W_ || < ||W — v||. Now take v = Yg,@/?), since

all rows of Y lie in the span of Y p, this choice of v also lies in the span of Y p. Thus,

Wil < (1w —oll = Y58 - YLZBI/b= 1) Bily; —9)1/b < e/(b—e).

]EP



Now, we have
W—w=Y5YpYE) H((b—26)1+c)+ W, —bYH(YpYE) "1 =YE(YpYE) Hc—261) + Wy,
[W —wl|? = (c—2e1)"(YpYh) *(c—2e1) + [Wo|? <cT(YpYh) tc+4e?/b* + /(b —¢)?
4 4 1
< 2)\ Y YT —1 4 2 b2 2 b_ 2 < i 2
S elPX((YrYE) ™) +42 0+ /(b= < g * 5t g )

where we use Eq. ﬂ@ to get that the cross terms are non-negative for the first inequality. First
4 i

4 8 1
TR eyD) Tt o < e eyh T e < o veyny wsing € < 0/2,m < 1,
b < 1, and Ag(YpY%) < 1. Then by taking { = Wﬁ we have [[W — w| < (e
4K :
Furthermore, ¢ < TR (Y PYTTE by using

1/02 =17(YpYE) ™M1 < KM ((YPYE)™) = K/A (YPYE).
O

he hyperplane of the optimal solution of One-class SVM with empirical

Lemma E.3. Let (W, )
A 14 (¢ +2)el.

be t
inputs, then b1 < Ypw < b

Proof. Using Lemmal[E2]
Yrw=YpW+ (Yp—Yp)W < Ypw+ Yp(W—w) +el <bl+ (Ce+ €)1 < bl + (€ + 2)el.

O

Lemma E.4. Let (w,b), (W,b) be the hyperplane of the optimal solution of One-class SVM with
population and empirical inputs respectively, and S be the set of nodes selected as support vectors in
the optimal solution of the dual problem with empirical inputs. Then for r; defined in LemmalA.])

r—1< %, Vi € S. Furthermore, Vi € [n], if WTy; < b+ (C+2)e thenr, — 1 < %.

Proof. FirstVi € S, we have,

b=w"g: =Wy +W'(§i —yi) =i Z $iW' Y1) + W (§i - i)
J

=r; Z di; W Y1) + i Z i W (Y1) — Y1) + W (i — ¥i)
J J

>r;b—rie—e.

This gives
b+ e 2¢ 2¢ 1
= h—e = ri—ls h—e = b—e—e b/(2¢) — 1’
where the last step uses b > b — ¢ from Lemma Similarly, for i € [n] such that wly; <
b+ (¢ + 2)e, we have b+ ((+2)e> r:b — rie — € and this givesr; — 1 < (lf%gzs. O
Lemma E.5. For S defined in Lemma Vi € S, 3j € [K] such that for ¢;; defined in Lemma
Gi; > 1—e, fore; = W;Y}TD)‘ Furthermore, i € [n), if WTy; < b+ (¢ + 2)e, then 3j € [K],
(C+4)e 2¢e

Pij 2 1 — €2, for €2 = e on e (YoYT) < DAn(YrYD)"

Proof. By Lemmawe have r; < 1+ b/(21e)71 = 1755/17' Asy; = 7,0 Yp, we have 1 =
|yl = rill 9T Ypll, so |67 Yol > 1= 2¢/b. Lety i = 3, t24-y1(j), ¥k € [K]. then
OIY p = dinyr) + (1 — dir)y—r. Itis easy to see that |ly_|| < 1, then
17 Ypl? < i + (1= din)? + 20k (1 — dir)y 1 (1) Y >
Dij

Y?(k)Y—k = Z m}’?(k))ﬁ(j) < I]n#a? Y?(k)yl(j) < I?if‘ Y}F(i)YI(l)-
J#k



Using 2x7 x5 = ||x1]|? + ||x2]|* — ||x1 — x2]|? for any same length vectors x; and x2, and

Iyry = yiwll* = ll(ei —e)" Yp||* = (e; —€;) " Yp YD (e — e)
> 2 min x YpY X = ZAK(YPYP),

[Ix[[=1

we have max; y?(i)yl(l) <1-MAg (YPYE). Then,

(1—2¢/b)* < ||lo] Yp|* < @3 + (1 — ¢ir)* + 20 (1 — i) (1 = A (YPY D))
=1 =20 (1 — i) Ak (YP YD),
which gives ¢ (1 — ¢ir) < W = €, Vk € [K]. Since ), ¢y, = 1, we must have
EI] € [K], ¢ij > 1 — €. Similarly, for i € [n] such that Wiy, < b+ (¢ + 2)e, we have

-1< (C+4)6 from Lemma . then d)TYp >1-— %, and this gives that ¢, (1 —

4)e € .
qblk) < (b+((+2()i;_)\;1(YpYT) =€ < WCPY]TD)’ using ¢ > 4 and (¢ + 2)e > 0. Also since

> Gik = 1, we must have 35 € [K], ¢;; > 1 — ea.

O

Remark E.1. Lemma[E-5|shows that for One-class SVM with empirical inputs, the support vectors
selected are all nearly corner points. Lemma [E3] shows that each corner point is closed to the

hyperplane (W, b) selected by One-class SVM by (¢ + 2)e, and then Lemma shows that each
point close to (W, b) by (¢ + 2)e are all nearly corner points. So choosing points that are (¢ + 2)e
close to (W, b) will guarantee us all the K corner points and some nearly corner points.

Lemma E.6. Let S, = {i : WT'§; < b+ (C+2)e}, thenVi,j € S., fores = ¢ + (g+326, we have
pi — @ill\/ A (YPYE) — 265 < |9 — 95l < lli — bill\/ M (YPYD) + 2es.

Proof. First we have, ||y, — ¢ Yp| = |3 — rquTYp F(ri— )T Yp| <et CH— ¢
where last step is by Lemma [E.4] This gives ||(3: — §;) — (¢:Yp — ¢;Yp)| < 263, “then we
have |¢] Yp — @] Yp| —2e3 < |9 — 9,1 < llo] Yp — @1 Yp| + 2e3. Combing with

lpi — &5l Ak (YPYE) < ||¢] Yp — o] Yp| < |l¢pi — ¢;]l\/ M (YPYF),
we have the result. O

Lemma E.7. Let S, = {i : WT§; < b+ (¢ + 2)e)}, then there exists exact K clusters in S,, given
T\\3
< o NOx(YPYp))” '
€< Cepry H(YPYIT)),for some constant c.

Proof. First because I € S, from Lemma|[E3] there exists at least K clusters in S.. By Lemma|[E.3]
Vie S., dk; € [K], ¢iki >1—e.Ifk; = kj, by Lemma

9 = 351 < i — @511/ A (YPYE) + 265 < V3eay/ A1 (YPpYE) + 2¢3.

This means if j is a corner point, ¢ will be close to it, and will be in the same cluster as long as there
is enough separation between different clusters. Now we will prove this is true. Similarly, if k; # &;,

195 = 351 > llés — d5ll\/ A (YPYE) = 2e5 > V2(1 = 2€2)\/ A (YPYT) — 2.
In order to have enough separation between p clusters, we need
V2(1 = 262)1/ Ak (YPYDE) — 265 = V24/ Ak (YPYE) — 2v/2601/ A (YPYE) — 263

> Cl(\/§62 Al(Yng) + 263),



for some constant ¢’ > 2. This is equivalent to show
2+ 2¢

V2> (2V2 + V3 /k(YPpYE))er + —————e3.
Ar(YpYD)
As
2+ 2
(22 + V3 \/k(YPYE))ez + Leg
Ak(YPYE)

<(2v2 +V3d\/k(YPpYDE))

2e 2 +2¢ ( (C+ 4)e>
+ €+
T —

< K(YpYF)Ce n Co Ce < \/ K(YpYh)e 41K VK
C - C3
T DA(YPYE) CAk(YPYE) b T A (YRYE) 0k (YPYD)Y [y v T

K'5,/k(YpPpYE)
<c €,
T Ok (YPYT))?
where ¢;, i € [4] are some constants we do not specify and we use 1/b* < K/A(YpY5) in the

K'5\/k(YpYTE

. ) ) .. ) )
second last inequality. So a sufficient condition for separated clusters is c4 O (Y pYT)) € <72,

which is
TV\3
<o MOR(YPYE)®
K1‘5\ / K,(Yng)
for some constant c.. O

F Consistency of inferred parameters

Lemma F.1. For set C returned by Algorithm there exits a permutation matrix TI € REXK that

Yo —MYp|r < ey, fores, = —ES ¢ and cy is some constant.
H C || — ’f ()\K(Ypyg))l.ss

Proof. By Lemma we know that Vi € S, 3j € [K] such that ¢;; > 1 — €5. Then we have:

19 =yl <196 = vl + lyi =yl S e+l > duyiay — riviy | + 1 = Dy i)l
]
<e+ri((1—giy) + |l Z dayrall) + (ri — 1)
14
4 4
<e+ |1+ (C+4)e (2e2) + (C+4)e (by LemmalE.4)
b— 2¢ b— 2e
cy( ¢ < ey VEC .
DAk (YPYE) = (Ak(YpYFE))to
cy K¢

where we use € < b/(4¢) and ¢ > 4. And ¢y is a constant. Then || Yo —IIY p|p < R ey )i &

< <]_—|—4b<>6+462<

Lemma F2. Let max; [|e] (Z — Z)| = <o, then |ly: — §:]| < {5
Proof. First note that by definition ||||z;|| — ||Z;]||| < eo, then,
|z zi || || Nzillzi = llzill2i || || 12:ll(zi — 20) + (23]l — l|Zll)2:
lyi — ¥l = -l = - -
lz:ll 112 lEANEA lEANEA]
24| (zi — 2:) ’ H (12l = llzall) 2 zi — 2 n ‘ 12| — |zl ' 2¢0
A zallllzall l1z][1|24 | Mzl [EA ~ [zl

The last step uses Lemma [H.1] O



Proof of Theorem2.8] First let us get some important intermediate bounds. Using Weyl’s inequality,
0:(Ye) —oi(Yp)| < |[Yo —TYp| < &
(Y YE) = X(YpYE)| =07 (Ye) =i (Yp)| < (0:(Ye) +0i(Yp))e
< (20,(Yp) + €4)eq.
Secondly,
Al < 1 < 2
A (Yo YE) ~ Ax(YPYE) — (20x(Yp) +ea)es — Ax(YPYR)
where we use (20, (Yp) + €1)es < Ak (YpY5)/2. Then,

(Y PYE) ™ = (YeYE) '] = [(ITYp(ITY p)") ! — (Yo YE) |
=Y p(ITY p)") (MY p(MY p)" = Yo YE) (Y YE) |
<I(YPYE) Y p(IIY p)T = Y YE[I(YYE)
<2|(YpYE) ' P(IIY e — Yo |AXY )T | + ¥ e | |(TTY p)T = YE)
<2(YpYE)HAUY Pl + 1Y eIYe - IIY p|)
<2[(YPYp) @IV plles + €i).

I(YeYE) ™) =

Note that M = ZYZ%(YpY%) L. Let max; |7 (Z — Z)|| = e, then,
lef (M — ZYE(YeYE) )| = llef (ZYE(YPYE) ™' = ZYL(YoYE) D)
=llel (Z -~ 2)YR(YPYE) DIl +llef (Z(Yr ~T1"Y )T (YPYE) )|
+ el (ZYEI(YpYE) ™ — (Y YE) )|
<llef (Z = DIIYPIIYPYE) | + el 2| Ye - TIY p || (YPYE) |
+ el Z| Y ellIT(Y,YE) ™ = (Yo YE) |
<(lef (Z = Z)IIIY |l + llef Z|[I¥c =Y pDI(YPYE) |
+2llel Z|IIYclll(YPYE) T P2IY plles + €)
<NYPYE) Y plleo + 131 Y P el ZII(YPYE) ™ [lea)
¥ plleo + 135(Y pYE)|le] Z|| o vryrs e _ eun(YrYE) el Z| K¢
- Ak (YPYE) ~ (k(YPYR))??

where we uses €4 < ||[Yp||/2, €0 < ||el'Z]| /2 for relaxations. O

€= €EnMm

G Equivalence of using V and VV7 as input of Algorithm

Lemma G.1. Letu; = e/ U = v; =elY = Vvl/||sz , 0 = eTU = vl/Hvl

yi = eTY = Vv,;/||[V¥;|. One-class SVM using rows of U (or U) and rows of Y (or Y) will
return the same solution 3.

Proof. Sincey; = Vv;/|Vv;| = sz/||vz|| =Vu;,and y; = VVZ/”VVZH = V9,;/|[%]| = Vi,

we have yly; = uf V'Vu; = uju; and 37y, = W/ VTVi; = ala;. It is easy to see that
One-class SVM using rows of U (or U) and rows of Y (or Y) have the same objective function
(Eq.[6) and thus will have the same solution of 3;, i € [n]. O

Remark G.1. By Lemmas and Theorem One-class SVM with y; =
i € [n] as inputs can find all the K corners corresponding to the pure nodes as support vectors for

DCMMSB-type models. Furthermore, as Yo =UcVT,
M = ZYL(Yo¥E) " = VVIVOLUoVIVTR) ! = VOL(U U0,

which shows that outputs of Algorithm using V and VV7 as input are same.



H DCMMSB-type models properties

Lemma H.1. For DCMMSB-type models, v;// 1(OTI?0) < ||vi| < 7/ Ak (OTT20O),
Vi € [n], and v;// M1 (OTT?20) < ||vi|]| < 7/ Ax(OTT20O), Vi € I. Note that ) = 1 for

DCMMSB and VK for OCCAM.
Proof. Eq. @) gives (T5'Vp)(Tp'Vp)T)~! = @TT20, then,

mae[e,(T5 'V p) |* = maxel (I V) (05 V) e, < mase (I V) (05 V) T

= M(TF'Vp)(TF'Vp)T) = 1/Ax (€7T°8)

min e;(Pp' Vp)||* = mine] (T5'Vp)(Tp Vp)Te; > i, x'(Tp'Vp)(Tp'Ve)Tx

= (TR V)T VE)T) = 1/0(07T20).

By Lemma Vi € [n], v = 70FT5'Vp, then ||v;| < ¢y, max; ||e;(Tp'Vp)| <

VY /A (OTT?20),  where = max; |61 Similarly,  ||v]] >
Yi mini ||91||1 mini Hez(]-‘j_DlVP)” > ’}/i/\/ )\1(®T1—‘2@) Note that Zb = 1 for DCMMSB
and /K for OCCAM. In general 1) > 1 and min; ||6;|; = 1 for any DCMMSB-type model that
satisfies ||0;], > 1 with p > 1. O

Lemma H.2. For DCMMSB-type models whose eigenvectors has the form in Lemma[2.1) if using
Z=VVT, M=TOTI,'N},', then:

M(YPYD) < w(OTT?0), Ak (YpY]) > 1/(k(©71?0)), and k(YPpY}) < (k(©7T7@))%
Proof. For DCMMSB-type models, we have V = I‘@I‘;le, and (VpVITD)‘1 =
1";,1®TI‘2@1"1§1 by Lemma and Theorem Note that Y p = N pZp, then we have
M(YpYE) =\ (NpZpZENp) = \{(NpVpVEND) = A\ (NpI'p(©TT?0)'T'pN)
< (M(NPTp))* M ((O7120) ) < (maxyi/|[vi)*/ Ak (©7T7O)
<\ (0TT?0)/\k(©7T?0) = K(OTT?O) (by proof of Lemma[H.T)
Similarly, we have:
M (YpYE) = Agk(NpLp(OTT?20) " 'T'pNp) > (A (NpIL'p))? Ak ((©TT?0)7 1)
> (min i/ [[il[)*/ 2 (O7T?©) > A (07T70) /(1)1 (07T?®))
=1/(r(©TT?©)) (by proof of Lemma [H.T)
And finally we have,
(YpYE) < (k(O®TT?@))2.
O
Lemma H.3. For DCMMSB-type models, let v; = VTe;, v; = VTe;, yi = Vvi/||Vvil, and
¥i=Vv/[|V¥; , then,

260 260\/ /\1(®TI‘2®)

<
[vill Vi

, 1 € [n]. Also let eg = max; ||v; — V;

ly: =il < |

Proof. From Lemmal[F2] we have

260 260 < 260\/)\1(@TI‘2®)

lyi = 3ill < = < :
T vl el i
where the last step uses Lemma[H.1] O



Lemma H.4. For DCMMSB-type models, \*(P) > p\*(B)\x (©1T2%0).

Proof. Let X = BOTT2@B, it easy to see that X is full rank and positive definite, then

X*(P) = pA*(T@BO'T) = p/Ax (IOBOTT?OBOTT) = p\/Ax (IOXOTT)

- p\/)\K X1/20TT20X1/2) = p\ [ Ak (XOTT20) > p\ /A (X) Ak (OTT20)

> /(A (B)2(Ax (OTT20))2 = pX* (B)Ax (O7T7@),

where we use that LL” and L”'L have the same leading K eigenvalues for a matrix L. € R"*X with
rank K < n. O

I DCMMSB error bounds

Lemma L.1. For DCMMSB-type models, if 0; ~ Dirichlet(a), let g = 1%04, Qmax = Max; o,
Omin = Min o, V = aO/amin; then

3 2 F: max 2
P )\1(@TP2®) < YmaxT (0‘ ax T HO%“ ) >1—Kexp .
2a0(1 + ap) 3612(1 4 ayp)?

n
_K B
P ( 3612(1 + a0)2>

2
P </@(@TI‘2®) 3’7111'1)( Qmax + ||Ot|| ) Z 1—9K exp (_ n )

Tl-12 r}/mm
(AK(@ ©)=z 2v(1 + )

min Ckmm 361/2(1 + Ol(])2

* ’len)\* n
P (A >1-— S L
( (P) =5, (1+ ao) p" eXp( 36V2(1+a0)2>

where \*(P) is the K -th singular value of P.

Proof. First note that
M (©TT20) = A\ (TOOTT) < (A (1))2\(007) = (A (I))*)\ (070).

Here we use that XX” and X7 X have the same leading K eigenvalues for X € R™*¥ with rank
K < n. Also, as ©7(T'2 — 42, I)® is positive semidefinite, we have

Ag(0TT20) = A (07 (T? = 42,1)© + 17,07 0) > A (07 (T? — 42, 1)0) + Ak (15,07 ©)
> YAk (©70)
By Lemma A.2 of [5],

3n (amax + Ha||
2()(0 1 + Oéo

p (Al(eTe) z1-K e"p< 36u2(n+ao)2>

P (070> s ) > 1= Koo (g )
)2
<

amm

max + |l n
P (k(©7O) < 3% 1-2K T
(m(@ Q)< exp 361/2(1 o)’

So k(®TT?0) = % < 1‘:“&(C~)T®) 3%“""“’&” I* with high probability. Using
Lemmal[H.4] we have,
A" (B)
() > pA*(B)Ax (07T20) > Jminh (B)
(P) 2 o (B (07T70) > a2 (B,
with probability at least 1 — K exp (—m). O
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Lemma L2. For DCMMSB-type models, we have (YpY5)™11 > %@Tl. Further-

more, if 8; ~ Dirichlet(c), with probability larger than 1 — 1/n3 — K exp (—m),

Ty—1 (min; v:)? n Voin 1 _ Do
(YPYP) 1= 271 (OTI20) u]‘ 2 3792 ax u]" where v = mina;

Proof. First note that, for diagonal matrices D € RT" and ' € RZ;" that have strictly positive

elements on the diagonal, and some matrices G € R@OX "™ and Hy € RLS™, Hy € RL;™ we have

DGD1 > (ml_in D;;)*G1, (11)
HITH,1 > min IyH H,1. (12)
Eq. (TT) is true because
DGD1 — (min D;;)?’G1 =DGD1 — min D;; GD1 + min D;;GD1 — (min D;;)’G1
=(D — miin D;I)GD1 + miin D;;G(D — miin D;I)1 >0,

where last step follows that D, G and (D — min; D;;I) are all non-negative. Eq. can be proved
in a similar way. Now use these on Eq. (9, we have

2
(YpY5) 11 =N;'T;'@'T?0r;'N5'1 > (min M) e'r’e1
v NI

|VI(1')||)2 2T (mini'}’i)z T
> | min ———— minvy;)°0®1> —————~—-0"1,
( G 10)) ( i ) A (OTT20)

where the last step follows Lemma [H.1] By Lemma C.1. of [4], we know if rows of © are from
Dirichlet distribution with parameter o = (v, g, - -+ , ), Qg = Zi aj, V= ap/ min; ag,

er1>" (1—0P (\/”bgn» 1
12 n

with probability larger than 1 — 1/n3. Now by Lemma we have, with probability larger than
1—1/n® — Kexp

n
<_ 36v2(14+ap)? )’

in; ;)2 in; ;)2 logn
Ty-1q 5 _(WiNi%)* o (miniy)® nofo Jvlog
YrYp) 12 emre)® 17 ey, |17 n !

Mmool +a0) nl Ywomin(l+a0) o Y 1,
T 3max® (Qmax + @l?) v 27 3970k (Omax + la][?) T 3R v

O

We use a crucial result from [S] that shows row-wise eigenspace concentration for general low rank
matrix.

Theorem L.3 (Row-wise eigenspace concentration [Sl]). Suppose P has rank K, max; ; P;; < p.
Let A;j = Aj; ~ Ber(P;;), V and V are P and A’s top-K eigenvectors respectively. If
P(max; |[V.illeo > p) < 01, and for some constant & > 1, pn = Q((logn)*) and
P(A\*(P) < 4/np(logn)*) < 8o, then for a fixed i € [n], with probability at least 1 — §; — 65 —
O(Kn=3),

T (V¥ —VVT)| =0 (m{K, K(P)}Enp

A (P)

11

) ((min{K, k(P)} + (logn)*) max V.illoo + (I + 1)n_25> :



We will use ¢ to denote a model specific number which is 1 for DCMMSB and VK for OCCAM,
defined in Lemmal[H.1]

Corollary 1.4. For DCMMSB-type models with 6; ~ Dirichlet(cx), let v; = V7Te;, ¥; = Ve,

yi = VVl/HVVZ , and yz = V\A/'l/HV\AII , 1 € [n} Also let g = max; ||Vz — v;l||, then, if
min(\/gmﬁanp) A (B 1 1 3
v o= il < s (B) > 8(1+ ao)(logn) for some constant £ > 1,

Omin 2(1+ ) v T N
k(OTT20) = O(1) and ay = O(1), we have

: 2 21 0.5
¢ = max ||y; — ¥i|| = ) (1/”7max Imn{K3 , (k(P))?TKY5p(1 + 040)) '
! ’ymm)\*(B)\/%

with probability at least 1 — O(Kn=3).

Proof. First by Lemma|H.3|

Hy' _y” < 260 < 260\//\1(®TI‘2®)
S T T Vi '

Also using Lemma [H.1]

max ||V, ;|| < max||vi]| < ¥ maxy,/\/Ax (O7T20).
J [ [

As max;v;/\/ Ak (©TT20) > max; v/ /M (OTT20) > /2/(3n) > (K + 1)n~%

with high probability. It is easy to see when pn = Q((logn)%*), we must have p >

2/(3n), so P(max; |V.illooc > /p) < 61 for 61 < Kexp( Also, as

736u2(?+a0)2 :
* rznjnA* B n *

P ()\ (P) > ﬁpn) > 1 — Kexp (—m) from Lemma PO*(P) <

4,/mp(logn)®) < & is satisfied with o < K exp (—m) Then by Theorem [L.3| we

have

=0 (min{K’;((?)}V K””) ((min{ I, (P)) + (log m)®) max [ V- soe + (K + 1))

— 0 (R} ) b
pA*(B)Ak (OTT20) Ak (©TT20)
with probability at least 1 — §; — d — O(Kn=3) =1 — O(Kn~3). So,

260/ (07T?0) _ <min{K2,(ﬁ(P))2}\/an) P Ymax /7 (OTT2O)

o /PN (B)Ak (©7T20) o

llyi = 3ill <

And using Lemmal|l. 1}

— ) S — A w’)/max min{KQ, (H(P))2}\/m\/[(n
€= m?X ly: = 3:ill =0 ( ’Ymin/\*(B))\K(@TFQQ)\/ﬁ

_0 Y Ymax Min{ K2, (k(P))?}/k(OTT20) K 51 (1 + ag)
Timin A (B)y/1p '

O

Proof of Theorem[3.2] Note that P = pI'®BOTT = VEVT, we have pI' pBI'p = VpEVE,
then pNpI' pBL pNp = NpVpEVENp = Y, VEVTYZ. As B has unit diagonal, let B(4, i) =
c?, then p7 ,y /IIVi( |* = *e] NpI'3Npe; = el Yo VEV' Ye; := d;. Since our estimation

for o7 /v ll* is eITI"Y o VEVTYZIIe;, and note that |E|| < max; [el P||; = O(pn),

12



|E|| < [|E| + |A — P|| = O(pn) using Weyl’s inequality and Theorem 5.2 of [3], and [|[VEVT —

VEVT|| < Ag1(A) + [P — A|| <2||P — Al| = O(/pn). Let d? = eI Yo VEVTYZe;, then
we have,

|d} — dZ | = el YPVEV Y e, — e/ TI" Yo VEV Y Te, |

<|lef(Yp —TIY)VEVIYELe;|| + el TIT Yo (VEVT — VEVT)YZLe ||
+ e " Y o VEVT (YL — YEID)e,||

<|lef (Yp —T"YO)||E[ + [VEV" = VEVT| + |E||le] (Yr - TT"Y ()|

<O(pn)es/VE + O(\/pn).
Using Lemma /P (OTI?20) < d; < ¢y/p i (OTT20), and by Lemma
2 2 -
A (OTT?20) < SWXI,aXQT;(OO(‘rln-;:;':;;laH ) A\ (©TT?20) > 217(%1 L then we have d; > ¢ 23%13_’22)

and d; < c\/ 373‘“*525(0‘1‘1‘25"0‘"2) with probability at least 1 — 2K exp (—m). Then, using
Lemmal[H.2}

Olpn)es/VE +O(/om) _ Olpn)es/VE +O(/pm)

|di — drgi)| < <
min; (d; +d7r(j)) Pk (OTT20)
O(pn/\ﬁ)%e + O(\/pn) 0 <K0'5(’€(9TF2@))1'5C\/[3716>
= Ax(OTT20) A< (OTT20)
o (Klﬁ(n(@Tr?@))Wﬁne) .
Ak (OTT20)

Let D = diag(dy,do, - ,d) and D = diag(dy,ds, - ,dx), then D = ¢,/p(NpTp). Now as
we estimate ¢,/p(I'®) by ¢y/pr® = MD, we have

le? (cy/pT® — &/AROIL)| = [[ef (MD — NIDID)| < [le (M — NIII)D | + [|e] MIL(D — 1" DII)|
<lle (M — ML) || D] + [} N1 [D — I DI < exy maxd; + (el M| + ear) max|d; — dy|

Searmancd; + (yomax [v; /7 + ear) max|d; — dr)

, K15 TT2@))3
o/ (@720 ey + [ ) o (KO TO) on )
A\ (OTT20) /A (OTT20)

where we use e/ M| = [e/TOTL'NL'|| < 76| maxjer ||v;||/v; and [|6;]] < 1 for
DCMMSB and OCCAM for the second last inequality. As
ek (Yp YD) TZIKC _ enn(YpYD)[eTZIK 4K
T OROYRE T k(YY) DR (PR
_ allef Z)(s(OTT?©))°K? _ e1imas (5(O7T?0)°K?
B n N NV Ak (OTT20)
Then

&5 = [[ef (¢,/pTO — &7/pTOIT

_ T2 KIP((OT70)) von
—C\/me”[+< /\K(GTI‘2® " M) < Ak (07T20) )

clwvmax( (07T20)) 6K2 L0 (k(OTT20))3 Vo
VA (OTT20) )\K (07T20)

} Ymax K15 (k @TI‘QG))) \fe)'

pA(OTT20)

=0 <max {¢K0-5( (0712@))3° @Tr? o)

13



As ey — eV/py| = |lef (c\/pT'® — &/prOI1|| < v/ Kes, let X; = e c,/pI'® and
X; = eT¢y/pI'OTL, then as | X; || < év/pi

X X,
Py P
es | WK ( WK )

< + es =0 €5
CPYi o P Yminy/P

=0 (max {wKO'S(FL(@TF2@))3'5,

X=X
c/PYi

VP — eV

e/ (© — OT1)|| = =
/Pt i

1]l

" } VYmax K10 (k(OTT20))3 6)

)\K(GTIQ@) YminT]
A 0.5 T2 3.5 n fozﬁlaszmin{Kz»(“(P))2}(”(®Tr2®))3'5\/ﬁ
=0 (max{wff (x(©7170)) vm@me)} 2V (B)Ak (OTT20) /5 )

o (VP K min{ K2, (5(P)) 2}
a ViV (B)A (OTT?@)/p )
Note that this bound works for both DCMMSB and OCCAM, and A x(©TT20) = Q(n), so the
bound is about O (1/,/pn). specifically, for DCMMSB,
R - 2,2  K2mind K2 P))2 3/2
lef (@ — 61| =0 (w i . )
YA (B)AL (©7T20),/p
_5 (wQWI%]aXKQ min{ K2, (x(P))*}2(1 + a0)2> .

(when x(©TT20) = O(1))

Tonin 1A (B) Vpn
O
J Topic model error bounds
J.1 Eigenspcae concentration for topic models
Consider the following setup similar to [[1]].
A;; “ Binomial(N, A;;)  Fori € [V],j € [D] (13)

Here A is the probability matrix for words appearing in documents. Furthermore, we have A = TH,
where T is the word to topic probabilities with columns summing to 1 and H is the topic to document
matrix with columns summing to 1. Also note that, >, ||l A.AT||; = D, since the columns of
A sum to one. We will construct a matrix A; A2T, where A; and A, are obtained by dividing the
words in each document uniformly randomly in two equal parts. For simplicity denote Ny = N/2.

. . A AT T
Consider the matrix U = ={5%. We have E[U] = AA".
1

Lemma J.1. For topic models, we have (YpY5)™11 > H;Il(’,lU?;)” 1> minil‘l(elT” 1, where T is
the word-topic probability matrix.

Proof. Noting that T = I'® for topic models, and following the steps of Lemmall.2] we find

. S . in; 7T
voyT)-l7 > _ Wil min % gy Wingy o ming |le; 1
(YrYp) =\ (O7T20) A (TTT) M (TTT)” ~ K ’

where the last step is true because A (T7T) < trace(T?T) = 3", || Te;||* < K. So we can choose
__ min, |le] T|| 0
==zl

(re)’1 =

Lemma J.2. Using Eq (13), we see that under Assumption[3.1

18D 1 D 1
P R||F<\/8 ogmax(V.D) ) -

N, max(V, D)’

14



Proof LetR :=U — AA”.
S Au(if) As(kj)
N?

Note that E[R;;] = 0, and A;(ij)A2(kj)/Ni is bounded by 1. Also A;(i,5) and Ay(i, j) are
independent. For independent X := A (ij)/N1, Y := Aq(kj)/Ny,

R, = — ik

3A; (i5) Az (kj)

var(XY') = var(X)var(Y) + var(X)E[X]? + var(Y)E[Y]? < N,

ar(R;) < 3gik/N

When g;; = 0, U;, = 0. When g, > 0, using Bernstein’s inequality, we have:

+2
P (|Rix| > tir) <2 — ik

Setting, t;, = \/24 log max(V, D)g;x /N1, we see that,

S 82, = 24logmax(V, D) 3 g /Ny = 241og max(V, D)D/N,
' ik
Then,

P(IR]r =) th ) <V?maxP (Rl > ti) < V?/max(V, D)’ < 1/ max(V, D),

This yields the result. O

Lemma J.3. Using Eq (13), we see that, under Assumption 3.1} there exists constants C,r such that,

P (||U —AAT| > CM/DlogD/N) <1/D".

A Ag,
N2
K" column of matrix M. Note that E S k 1s the V' x V zeros matrix. We also see that by symmetry

of the random splitting, E[Sj, ST

Proof. We use the Matrix Bernstein bound in [8]. Let Sy, := — .Ak.A;‘:, where My, is the

We will now note some theoretical properties of the Sy matrices. Let X be a vector of size V, such
that, X; ~ Binomial(N, a;).

EXTX] ~E[X? & EX,]? + var(X;)
N2 - N2 - Z N2
1 1=1 1 =1 1
1%
B Nia? + Nia;i(1 —a;) 1 5 1
_Z N? =|1- N ”aH2+E (14)
=1
Furthermore, let
COV(X) = 2, Zij = Nlai(l — al)l(z = j) (15)
Then,
T AlkAszA2kA1Tk T T
E[S;S.|=E — g A AL AL AL
1
E[AT Ay JE[A,AT
(By independence) = [Agy 2’;1[4[ wAL A l3AR AL
1
(1 I/ 2 T
GyEa@and @D = (5 + 1A ) ) (55 + Al ) - 1AuBAAL

A
~ PR+ T (B )
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Since | x| < N1 | Axlly = N1, | All7 < D,

Al% D D 1
S) = E[S,ST <2H7F Z < Z (o4 ).
" Zk:[kk]_ Ny +N12_N1 +N1
Furthermore,
A A
Isil < el + PAvIIART o )
i

So the Matrix Bernstein bound gives us:

£2/2 B t2/2
P <|| zk:SkH 2 t) < 2V exp <_U(S)+Lt/3> =2V exp <_3D/Nl—|—2t/3)

Using t = C,.+/Dlog D/N, and using the condition in Assumption we get the bound. O

Proof of Lemma[33] First note the proof is under Assumption[3.1] Let R = U — .A.A”". Using the
Davis Kahan lemma [9], we see that:

c(2\1(AAT) + |[R|l2) min(VE (R ], R F)
A (AAT) ’

[VO - V|r <

where \; and \x are the largest and K*" largest singular values (and also eigenvalue) of A.A”7
respectively. Thus,

VB(2A1 (AAT) + [R[2) min(VE R, [R]r)

VO - V|p <
201 (AAT) + /Dlog D/N \/DlogD \/CD log max(V, D)
<8 e (AAT)? max [ C,VK N N
A (HHD N (TTT) 0 K Dlogmax(V, D)
= A2 (HHT)\2(TTT) © N

B K(HHT)/\l(TTT)O K log max(V, D)
T X (TTT) P DN ’

where the third inequality follows Lemma[H.4|with P = AA”T, T® = T,B = HH” and p = 1.
Now we bound |lel (VVT — VVT)]| as:
lef (VVT = VVT)[| < [VVT = VVT|; <[|(VO - V)O'VT + V(VO - V)|

x(HHT)A\ (TTT) 0 K log max(V, D)
A2 (TTT) P DN '

J.2  Parameter estimation for topic models

Proof of Theorem[3.4] For topic models, M = TD, where T = I'®, D = (NpLp)™L, v =
T;; = |lel'T|;. For empirical estimation we have M = TD, where D(i,4) = || M(:,4)]|1. First we
have Vi € K, | T(:,7)|[1 = 1, then |[M(:,4)[|y = D(4,4) = ||Vl /71¢)» let 7 be the permutation
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function for permutation matrix IT in Theorem [2.8] then,

D, i) = D (@), ()| = [IM(:, 8) |1 — |IM(, (@) |< IMLC:, 8) = MG, 7 (0))

1%
j=1
1% . .
_ Z HeTTH1 ||M(j, :) - M(]v )HHl
: lef Tl
M(j,:) — M(j, )T = M(j,:) — M(j, )T
< Ko MO MG s MG~ 1G]
J llej Tlx J lej Tlx
K1'56M
= €p

~ min; \|e?TH1 '
Note that T7T = ©7 T2, and from Lemma[H.1] we know
1/\/A(TTT) < |lvill /v < 1/4/Ax(TTT), Vi € [n]

Using Lemma[H.2} we have \; (Y, Y7%) < 5(OI20) = x(TTT), Ak (YpY%) > 1/k(OI?0) =
1/6(TTT), and k(YpYE) < (k(OI?0)) = (k(TTT))>2.
Then the error for each row of T is
lef (T —TI")|| = [lef (MD~' — MD~'1I1")|
< [lef (M1 — MI)D | + [/ MITT (D! — ID~'117) |

D(j,j) - D(x(j), 7(5)) H

< [lef (M — MIT”)|| max 1/D(j, j) + |le/ M|| max o
J J D(j, j)D(7(j), 7(5))

QGJW 26D

< — — . 5llel M|

min; D(7,7)  (min; D(4,7))?
- 2€M n 26D max; D(j,j)He;TTH
= ming [[vigll/vrgy  ming [[vig /v min; D(j, 7)

VA (TTT) K¢y,
< 24/ M (TTT) 24/ M1 (TTT) |l —2
1( EM + 1 /—TTT || €; ”minj ||eTT||

el Tl 15 cnr(YPYR)|el Z| K¢
: T T\)2.5
min; [le; Ty (A (YPYR))

< 4/ M (TTT) /h(TTT)

T||
A (TTT)(k(TTT 55K257%“a"”e
T ((T7D)) R e S e

(T (k(T7D))T K masx; el T
" min, el T,

led T e,

(using ¢ < W)

where we use ep < D(3, j)/2 for relaxation in the 3rd inequality and ¢; and ¢, are some constants.
Under Assumption [3.1] by Lemma([3.3] we have

eo = |lel (VVT —vVT)||p =

k(HHT)A\ (TTT) K log max(V, D)
A2(TTT) DN '

By Lemma ly: — 9l < ﬁ < 20y (T T) V)‘I(TTT). So,

el Tl

T T L. 0og max
= max |y — g = ST ( Klg(”’)

min; [|e] T[|; A% (TTT) DN
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Then,

lef (T — TI)|| _ c2y/ M\ (TTT)(s(T7T))"K*> max; e/ T
lef T - n min; [|e] T,

VAL(TTT)(k(TTT))" K39 max; [[e] Ty x(HHT)(A (TTT))"5 ( K log max(V, D)

= . - Op
7 min; ||ejTT||1 min; ||ejTT||1/\%((TTT)

_ max; [le] T, H(HHT)(KJ(TTT))QO K [log max(V, D)
~ (min; [I'T1)2 n P DN

K*max; ||e;‘-FT||1 logmax(V, D)
=0p .
(min; [|e] T|1)? DN

DN

(f x(TTT) = ©(1) and k«(HHT) = ©(1))

O

K Converting SBMO to DCMMSB

Since for stochastic blockmodel with overlaps (SBMO) [2]], P = pZBZ, where rows of Z are binary
assignments to different communities, we have P = pZBZ = p'TOBOT, where v, = |lel Z|| €
(K], 0; = el'Z/||eTZ]|, v; is normalized from 7/ to sum to n for identifiability and p’ = p 3" +//n.
We can see each SBMO model is corresponding to an identifiable DCMMSB model, thus we can use
SVM-cone to recover SBMO model. The way to get binary assignment can be easily done by setting
threshold as 1/ K for each element in e.

L. Closed form rate for known special cases

For a Stochastic Blockmodel (SBM) with K = 2 classes of equal size and standard parameters (p = p,
B11 = Bay = 1,B12 = Ba1 = ¢/p), our result suggests that as long as (p — q)//p = Q(1/+/n),
SVM-cone will consistently estimate the label of each node uniformly with probability tending to
one. This is similar to separation conditions in existing literature for consistent estimation in SBMs,
up-to a log factor.
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M Network statistics for DBLP datasets

Table 1: Network statistics
(a) Author-author DBLP Graphs.

[ Dataset [ DBLPI [ DBLP2 | DBLP3 | DBLP4 [ DBLP5 |
# nodes n 30,566 | 16,817 | 13,315 | 25,481 | 42,351
# communities K 6 3 3 3 4
Average Degree 8.9 7.6 8.5 5.2 6.8
Overlap % 18.2 14.9 21.1 144 18.5
(b) Bipartite Graphs.
[ Dataset | DBLPI | DBLP2 [ DBLP3 | DBLP4 [ DBLP5 |
# nodes n 103,660 | 50,699 | 42,288 | 53,369 | 81,245
# communities K 12 6 6 6 8
Average Degree 34 34 3.6 2.6 3.0
Overlap % 6.3 5.6 5.7 6.9 9.7

N DBLP bipartite author-paper networks

N SVM-cone  EEE SVI OCCAM
10% BEE GeoNMF B BSNMF E= SAAC
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Running time /s

DBLP1 DBLP2 DBLP3 DBLP4 DBLP5
Figure 1: DBLP coauthorship wall-clock time

Figure 2: The wall-clock time of the competing methods respectively on the biparite author-paper
DBLP network. BSNMF was out of memory for DBLP1 and DBLPS.
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O Statistics of topic modeling datasets

Table 2: Statistics of topic modeling datasets

Corpus Vocabulary size V' | Number of documents D | Total number of words

NIPS' 5002 1,491 1,589,280
NYTimes' 5004 296,784 68,876,786
PubMed' 5001 7,829,043 485,719,597

20NG? 5000 9,540 886,043

Enron' 5003 29,823 4,963,162

KOS' 5001 3,412 405,190

P Topics in Real Data

Table 3: Top-10 word of 5 topics for different topic modeling datasets

[ Corpus |

Top-10 words

NIPS

algorithm data problem method parameter point vector distribution error space

neuron output pattern signal circuit visual synaptic unit layer current

data unit training output image information object recognition pattern point

unit hidden output layer weight object pattern visual representation connection

error algorithm training weight data parameter method problem vector classifier

NYT

con son solo era mayor zzz_mexico director sin fax sector

zzz_bush government school campaign show american member country zzz_united_states law

company companies market stock business billion plan money analyst government

team game season play player games run coach win won

file sport zzz_los_angeles notebook internet zzz_calif read output web computer

PubMed

receptor expression gene binding system function region genes dna mechanism

concentration strain gene dna system expression region genes test function

tumor gene expression disease genes lesion mutation region dna clinical

rat concentration plasma day serum animal liver drug response administration

children disease clinical year test therapy women system diagnosis drug

20NG

key government car chip state including information c¢s number long

god jesus bible question things life christian world christ true

year michael game team cs games win play including car

drive mb scsi windows card hard disk dos computer drives

windows window dos file files program card fax run win

Enron

report status changed payment approved approval amount paid due expense

database error operation perform hourahead data file process start message

power california customer gas order deal list office forward comment

message contract corp receive offer free send list received click

hourahead final file hour data price process error detected variances

KOS

iraq administration military iraqi president american troops bushs officials soldiers

voting vote senate polls governor electoral voter media voters primary

percent senate race elections republican party state voters campaign polls

senate polls governor electoral primary vote ground races voter contact

dean edwards primary clark gephardt lieberman iowa results polls kucinich

"https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
http://qwone.com/~jason/20Newsgroups/
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